Please wait a minute...
材料导报  2018, Vol. 32 Issue (20): 3531-3534    https://doi.org/10.11896/j.issn.1005-023X.2018.20.007
  无机非金属及其复合材料 |
NO3为配体的超卤素/飙卤素的理论研究
赵兴华1,2, 刘维慧2, 李春1, 元光1
1 中国海洋大学信息科学与工程学院,青岛 266100;
2 山东科技大学电子通信与物理学院,青岛 266590;
Theoretical Study of Nitrate Superhalogens/Hyperhalogens
ZHAO Xinghua1,2, LIU Weihui2, LI Chun1, YUAN Guang1
1 School of Information Science and Engineering, Ocean University of China, Qingdao 266100;
2 College of Electronic, Communication and Physics, Shandong University of Science and Technology, Qingdao 266590;
下载:  全 文 ( PDF ) ( 2771KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以超卤素M(NO3)2-(M=Li, Na)为基元,构建了超卤素团簇Mn(NO3)n+1-(M=Li, Na;n=2,3)。采用密度泛函理论研究了这些团簇的结构、垂直电离能(VDE)、 绝热电离能(ADE)等性质。M2(NO3)3-由超碱金属M2(NO3)+与NO3-结合形成,结果显示,用超碱金属取代碱金属作为团簇的中心, M2(NO3)3的VDE不升反降。M3(NO3)4-由金属原子与超卤素M(NO3)2-结合形成,碱金属是团簇中心。M3(NO3)4- 的VDE大于基元,形成了飙卤素。而且通过最高占据轨道与最低非占据轨道间的能级差(HOMO-LUMO gap)的计算结果发现,随着碱金属原子数目的增加,团簇的化学稳定性越高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵兴华
刘维慧
李春
元光
关键词:  密度泛函理论  超卤素  飙卤素  垂直电离能  绝热电离能    
Abstract: Nitrate superhalogens clusters Mn(NO3)n+1-(M=Li,Na;n=2,3)were built using superhalogens M(NO3)2- as building blocks. The structural of the clusters, the vertical detachment energy (VDE), and the adiabatic detachment energy (ADE) were investigated by using the density functional theory. M2(NO3)3- was consist of two NO3- and one superalkali M2(NO3)+, the results indicated that utilizing the superalkali metal to replace the alkali metal as the center of the clusters, the VDEs of M2(NO3)3 reduced. M3(NO3)4- was formed by one alkali metal atom and two superhalogen M(NO3)2-, and the alkali metal atom was the center of M3(NO3)4-. The VDEs of M3(NO3)4- exceeded that of the blocks and formed hyperhalogens. Moreover, the calculated results of the HOMO-LUMO gap between the highest occupied orbit and the lowest unoccupied orbit showed that the stability of clusters enhance with the increase of the number for alkali metal atoms.
Key words:  density functional theory    superhalogen    hyperhalogen    vertical detachment energy    adiabatic detachment energy
               出版日期:  2018-10-25      发布日期:  2018-11-22
ZTFLH:  O641.3  
基金资助: 国家自然科学基金(41476082)
作者简介:  赵兴华:女,1978年生,博士研究生,研究方向为团簇理论 E-mail:xhzhaoxh@126.com;yuanguang@ouc.edu.cn
引用本文:    
赵兴华, 刘维慧, 李春, 元光. NO3为配体的超卤素/飙卤素的理论研究[J]. 材料导报, 2018, 32(20): 3531-3534.
ZHAO Xinghua, LIU Weihui, LI Chun, YUAN Guang. Theoretical Study of Nitrate Superhalogens/Hyperhalogens. Materials Reports, 2018, 32(20): 3531-3534.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.20.007  或          http://www.mater-rep.com/CN/Y2018/V32/I20/3531
1 Shelley A C, Castleman A W, Shiv N K, et al. Cluster-Assembled materials [J]. ACS Nano,2009,3:244.
2 Denis E,Bergeron A,Welford Castlemanr, et al. Formation of Al13I-: Evidence for the superhalogen character of Al13 [J]. Scie-nce,2004,84:304.
3 Bergeron D E, Roach P J,Castleman A W, et al. Al cluster superatoms as halogens in polyhalides and as alkaline earths in iodide salts [J]. Science,2005,231:30.
4 Li Y W, Wang Q.Progress in superhalogen research: Structures, properties and potential applications [J]. Scientia Sinica Chimica,2013,43(2):142(in Chinese).
李亚伟,王前.超卤素的结构、特性及应用研究进展[J].中国科学:化学,2013,43(2):142.
5 Gutsev G L, Boldyrev I A. DVM-Xα calculations on the ionization potentials of MX complex anions and the dlectron-affinities of MXk+1 superhalogens[J]. Journal of Chemical Physics,1981,56(3):277.
6 Hotop H, Lineberger W C. Binding energies in atomic negative ions [J]. Journal of Physical Chemical Rference Data,1985,14:731.
7 Gutsev G L, Boldyrev A I. The way to systems with the highest possible electron affinity [J]. Chemical Physics Letters,1984,108:250.
8 Gutsev G L, Boldyrev A I. Theoretical estimation of the maximal value of the first, second and higher electron affinity of chemical compounds[J]. Journal of Physical Chemistry,1990,94:2256.
9 Wen H, Liu Y, Xu K, et al. Sequential observation of alkali-halide gas phase clusters in high resolution TOF-MS and prediction of their structures[J]. Chinese Journal of Chemical Physics,2013,26(6):729.
10 Willis M, Götz M, Kandalam K, et al. Hyperhalogens: Discovery of a new class of highly electronegative species [J]. Angewandte Chemie-International Edition,2010,49:8966.
11 Paduani C, Jena P A. Recipe for designing molecules with ever-increasing electron affinities [J]. Journal of Physical Chemistry A,2012,116:1469.
12 Anusiewicz I. Superhalogen anions utilizing acidic functional groups as ligands [J]. Journal of Physical Chemistry A,2009,113:6511.
13 Behera S, Samanta D, Jena P. Nitrate superhalogens as building blocks of hypersalts [J]. Journal of Physical Chemistry A,2013,117:5428.14 Giri S, Behera S, Jena P. Superalkalis and superhalogens as building blocks of supersalts [J]. Journal of Physical Chemistry A,2014,118:638.
15 Wang S J, Li Y, Wang Y F, et al. Structures and nonlinear optical properties of the endohedral metallofullerene-superhalogen compounds Li@C60-BX4 (X=F, Cl, Br) [J]. Physical Chemistry Chemical Physics,2013,15(31):12903.
16 Zhao T S, Li Y W, Wang Q, et al. Tuning electronic and magnetic properties of silicone with magnetic superhalogens[J].Physical Chemistry Chemical Physics,2013,14:3227.
17 Bartlett N, Lucier G, Shen C, et al.The oxidizing properties of ca-tionic high oxidation state transition-element fluoro species [J]. Journal of Fluorine Chemistry,1995,71:163.
18 Wu M M, Wang H, Ko Y J, et al. Manganese-based magnetic superhalogens [J]. Angewandte Chemie-International Edition,2011,50:2568.
19 Wudl F. From organic metals to superconductors: Managing conduction electrons in organic solids [J]. Accounts of Chemical Research,1984,17:227.
20 Jena P. Superhalogens: A bridge between complex metal hydrides and Li ion batteries [J]. Journal of Physical Chemistry Letters,2015,6:1119.
21 Marcelle G E, Geir M H. Molten Salts Chemistry and Technology[M]. US: Wiley, 2014.
22 Frisch M J, Trucks G W, Schlege H B l, et al. Gaussian 03, Rev. E.01; Gaussian, Inc. Wallingford CT[EB],2004.
23 Aihara J. Correlation found between the HOMO-LUMO energy se-paration and the chemical reactivity at the most reactive site for isolated-pentagon isomers of fullerenes [J]. Physical Chemistry Chemical Physics,2000,2(14):3121.
24 Li J,Li X, Zhai H J, et al. Au20: A tetrahedral cluster [J]. Scie-nce,2003,299(5608):864.
25 Zhao X H, Liu W H, Wang J S, et al.Theoretical study of ‘mixed’ ligands superhalogens: Cl-M-NO3(M=Li,Na,K)[J]. Chemical Physics Letters,2016,658:197.
26 Wang X B, Ding C F,Wang L S, et al. First experimental photoelectron spectra of superhalogens and their theoretical interpretations[J]. Journal of Physical Chemistry,1999,110:4763.
27 Alexandrova N, Boldyrev A I, Fu Y J, et al. Structure of the Nax-Clx+1-(x=1—4) clusters via ab initio genetic algorithm and photoelectron spectroscopy[J]. Journal of Physical Chemistry,2004,121:5709.
[1] 王骏齐, 张衍敏, 陈天弟, 王恒, 田遴博, 冯超, 夏金宝, 张飒飒. 不同浓度Ag掺杂ZnS的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2019, 33(z1): 33-36.
[2] 王宇鲲, 魏永刚, 彭博, 李博, 周世伟. 镁质贫镍红土矿热分解理论计算与实验研究[J]. 材料导报, 2019, 33(8): 1406-1411.
[3] 何海峰,寇新秀,吕海亮,白瑞钦,刘欣,靳涛. 聚酰胺胺改性纳米二氧化硅的研究进展[J]. 材料导报, 2019, 33(17): 2882-2889.
[4] 陈军, 闵凡飞, 刘令云. 煤泥水中微细煤与高岭石颗粒间微观作用的密度泛函研究[J]. 材料导报, 2019, 33(16): 2677-2683.
[5] 吴苗苗李洺阳, 李鸿鹏, 张翔, 魏雪虎, 杨志宾, 马向东. BxSy、BxSey (x=1、2, y=1—6)团簇结构的计算模拟研究[J]. 材料导报, 2019, 33(10): 1646-1651.
[6] 余明远, 王璐, 曲雯雯, 张利波, 张家麟, 陈阵. 硫化镉/石墨烯复合光催化剂的微波水热合成及DFT研究[J]. 材料导报, 2019, 33(10): 1602-1608.
[7] 解婕, 包桂蓉, 孟一鸣, 杨智翔, 何涛. 超临界甲醇中2,3-二氢苯并呋喃加氢脱氧的理论研究[J]. 材料导报, 2018, 32(6): 977-982.
[8] 黄俊, 李荣兴, 谢刚, 田林, 杨妮, 俞小花, 李威. 金红石型TiO2(110)表面吸附TiCl4的微观机理[J]. 材料导报, 2018, 32(20): 3524-3530.
[9] 栾扬,赵志曼,全思臣,曾众,吴佳丽,梁祎. 基于密度泛函理论研究磷建筑石膏晶体表面吸附丁二酸转晶机理[J]. 《材料导报》期刊社, 2018, 32(12): 2118-2123.
[10] 刘建国, 安振涛, 张倩, 杜仕国, 姚凯, 王金. 硝酸羟胺的热稳定性评估及热分解机理研究*[J]. 《材料导报》期刊社, 2017, 31(4): 145-152.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed