Please wait a minute...
材料导报  2018, Vol. 32 Issue (20): 3524-3530    https://doi.org/10.11896/j.issn.1005-023X.2018.20.006
  无机非金属及其复合材料 |
金红石型TiO2(110)表面吸附TiCl4的微观机理
黄俊1, 李荣兴1, 谢刚2,3, 田林2,3, 杨妮2,3, 俞小花1, 李威1
1 昆明理工大学冶金与能源工程学院,昆明 650093;
2 昆明冶金研究院,昆明 650031;
3 共伴生有色金属资源加压湿法冶金技术国家重点实验室,昆明 650500;
Microscopic Mechanism of Rutile Titanium Dioxide (110) Surface Adsorption TiCl4 Molecule
HUANG Jun1, LI Rongxing1, XIE Gang2,3, TIAN Lin2,3, YANG Ni2,3,
YU Xiaohua1, LI Wei1
1 Metallurgy and Energy Engineering College, Kunming University of Science and Technology, Kunming 650093;
2 Kunming Metallurgy Research Institute, Kunming 650031;
3 State Key Laboratory of Common Associated Non-Ferrous Metal Resources Pressure Hydrometallurgy Technology, Kunming 650500;
下载:  全 文 ( PDF ) ( 5607KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用密度泛函理论平面波赝势方法研究了TiCl4分子在TiO2(110)表面桥位氧上的吸附,对稳定吸附构型的吸附能、电荷密度、差分电荷密度、电子态密度、Mulliken电荷布居等进行计算和分析。研究结果表明,TiCl4在完整晶胞表面不能吸附;在有氧空位的晶胞表面,TiCl4以面心向下吸附最稳定,吸附过程为放热。当表面氧空位密度为12.5%、25%时,面心向下吸附方式的吸附能分别为-29.780 9 kJ·mol-1和-48.641 9 kJ·mol-1,表明氧空位密度越高,吸附强度越强;带隙从1.304 eV分别减小到0. 074 eV、0.015 eV,能带结构的带隙宽度变窄,表明氧空位密度越高,带隙宽度越窄;TiCl4分子向晶胞表面转移的电荷分别为0.2 eV、0.26 eV,说明随着表面氧空位密度增加,TiCl4分子向晶胞表面转移的电荷量增加,表面对分子的氧化作用越强。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄俊
李荣兴
谢刚
田林
杨妮
俞小花
李威
关键词:  密度泛函理论  晶核生长  氧空位  表面吸附    
Abstract: The paper studied the oxygen adsorption of the TiCl4 molecules in TiO2(110) on the surface of the bridge by using the density functional theory of plane wave turns potential method, based on which the stable adsorption configurations of adsorption energy, charge density and charge density difference, the density of electronic states, Mulliken charge, and Mulliken population were calculated and analyzed. The research revealed that the TiCl4 could not be adsorbed in the surface of complete crystal cell while on the surface of the cell with oxygen vacancy, the adsorption of TiCl4 molecules showed its high downward stability and the adsorption process is exothermic reaction. When the surface oxygen vacancy density were 12.5% and 25%, the surface adsorption energy downward could respectively be -29.780 9 kJ·mol-1and -48.641 9 kJ·mol-1, which showed that the higher the density of oxygen vacancy was, the adsorption would be stronger. The band gap reduced from 1.304 eV to 0. 074 eV and 0.015 eV respectively. In addition, the band gap changed narrow which indicated that the higher the density of oxygen vacancy was, the narrower the width of band gap would be. The charge that TiCl4 molecules transferred to the cell surface was 0.2 eV and 0.26 eV. This results conveyed that with the increase of surface oxygen vacancy density, the charge that TiCl4 molecules transferred to the cell surface increased, and the oxygen reaction of surface to molecules would be intenser.
Key words:  density functional theory    nucleus growth    oxygen vacancy    surface adsorption
               出版日期:  2018-10-25      发布日期:  2018-11-22
ZTFLH:  TF823  
基金资助: 国家自然科学基金(51404123);云南省应用基础研究计划项目(2013FC003)
作者简介:  黄俊:男,1990年生,硕士研究生,研究方向为氯化法钛白氧化机理 E-mail:750278802@qq.com 李荣兴:通信作者,男,1964年生,博士,教授,研究员,硕士研究生导师,研究方向为有色金属的湿法冶金 E-mail:lrxlyw@163.com
引用本文:    
黄俊, 李荣兴, 谢刚, 田林, 杨妮, 俞小花, 李威. 金红石型TiO2(110)表面吸附TiCl4的微观机理[J]. 材料导报, 2018, 32(20): 3524-3530.
HUANG Jun, LI Rongxing, XIE Gang, TIAN Lin, YANG Ni,
YU Xiaohua, LI Wei. Microscopic Mechanism of Rutile Titanium Dioxide (110) Surface Adsorption TiCl4 Molecule. Materials Reports, 2018, 32(20): 3524-3530.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.20.006  或          http://www.mater-rep.com/CN/Y2018/V32/I20/3524
1 付一江.2015年钛白粉行业的发展现状及市场走势[C]∥中国涂料、颜料行业工作年会.北京,2016.
2 Maulik M,Yonduck S,Venkatramanan R,et al. Multiscale modeling of TiO2 nanoparticle production in flame reactors: Effect of chemical mechanism[J]. Industrial & Engineering Chemistry Research,2010,49(21):10663.
3 Shigeharu M,Tsuyoshi Y,Atsuo K,et al. A Mechanism for the production of ultrafine particles of TiO2 by a gas phase reaction [J]. Powder & Particle,1988,6:65.
4 Sotiris E P,Patrick T S. Competition between gas phase and surface oxidation of TiCl4 during synthesis of TiO2 particles[J]. Chemical Engineering Science,1998,53(10):1861.
5 Singh, Ishwar R. Direct numerical simulation and reaction path analysis of titania formation in flame synthesis[C]∥Communication Systems (ICCS),2010 IEEE International Conference on. IEEE,2012:522.
6 Yonduck S, Venkat R, Rodney O F. Large-eddy-simulation-based multiscale modeling of TiO2 nanoparticle synthesis in a turbulent flame reactor using detailed nucleation chemistry[J]. Chemical Engineering Science,2011,66(19):4370.
7 Ghoshtagore R N. Mechanism of heterogeneous deposition of thin film rutile[J]. Journal of the Electrochemical Society, 1970,117(4):125.
8 Richard H W,Matthew S C,Oliver R I,et al. Toward a comprehensive model of the synthesis of TiO2 particles from TiCl4[J]. Industrial & Engineering Chemistry Research,2007,46(19):6147.
9 Richard H W,Raphael A S,Markus K,et al. A detailed kinetic mo-del for combustion synthesis of titania from TiCl4[J]. Combustion & Flame,2009,156(9):1764.
10 West R H, Beran G J, Green W H, et al. First-principles thermochemistry for the production of TiO2 from TiCl4[J]. Journal of Physical Chemistry A,2007,111(18):3560.
11 Shirley R, Akroyd J, Miler L A, et al.Theoretical insights into the surface growth of rutile TiO2[J]. Combustion & Flame, 2011, 158(10):1868.
12 Cui X,Wang B,Wang Z,et al.Formation and diffusion of oxygen-vacancy pairs on TiO2(110)-(1×1)[J]. Journal of Chemical Physics,2008,129(4):044703.
13 Wang Zhuo. Theoretical study on surface defects and molecular adsorption of titanium dioxide [D]. Hefei: University of Science and Technology of China,2010(in Chinese).
汪卓.二氧化钛表面缺陷及分子吸附的理论研究[D].合肥:中国科学技术大学,2010.
14 Lin Qiaolu, Li Gongping, Xu Nannan, et al. A first-principles study on magnetic properties of the intrinsic defects in rutile TiO2[J]. Acta Physica Sinica,2017,66(3):302(in Chinese).
林俏露,李公平,许楠楠,等.金红石TiO2本征缺陷磁性的第一性原理计算[J].物理学报,2017,66(3):302.
15 Guo Yubao, Yang Ru. Theoretical study on the atomic structure and electronic structure of rutile nano-TiO2(110) surface[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition),2004,31(5):64(in Chinese).
郭玉宝,杨儒.金红石型纳米TiO2(110)表面原子结构和电子结构的理论研究[J].北京化工大学学报(自然科学版),2004,31(5):64.
16 Inderwildi O R,Kraft M. Adsorption,diffusion and desorption of chlorine on and from rutile TiO2(110): A theoretical investigation[J]. Chemphyschem,2007,8(3):444.
17 Patrick T S,Olivier C,Stavros T,et al.Titania formation by TiCl4 gas phase oxidation,surface growth and coagulation[J]. Journal of Aerosol Science,2002,33(1):17.
18 Atsuo K,Katsuki K,Shigeharu M. Growth and transformation of TiO2 crystallites in aerosol reactor[J]. Aiche Journal,1991,37(3):347.
19 Ulrike D. The surface science of titanium dioxide[J]. Surface Science Reports,2003,48(5-8):53.
20 李健,周勇,译.密度泛函理论[M].北京:国防工业出版社,2014.
[1] 王骏齐, 张衍敏, 陈天弟, 王恒, 田遴博, 冯超, 夏金宝, 张飒飒. 不同浓度Ag掺杂ZnS的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2019, 33(z1): 33-36.
[2] 王宇鲲, 魏永刚, 彭博, 李博, 周世伟. 镁质贫镍红土矿热分解理论计算与实验研究[J]. 材料导报, 2019, 33(8): 1406-1411.
[3] 何海峰,寇新秀,吕海亮,白瑞钦,刘欣,靳涛. 聚酰胺胺改性纳米二氧化硅的研究进展[J]. 材料导报, 2019, 33(17): 2882-2889.
[4] 陈军, 闵凡飞, 刘令云. 煤泥水中微细煤与高岭石颗粒间微观作用的密度泛函研究[J]. 材料导报, 2019, 33(16): 2677-2683.
[5] 吴苗苗李洺阳, 李鸿鹏, 张翔, 魏雪虎, 杨志宾, 马向东. BxSy、BxSey (x=1、2, y=1—6)团簇结构的计算模拟研究[J]. 材料导报, 2019, 33(10): 1646-1651.
[6] 余明远, 王璐, 曲雯雯, 张利波, 张家麟, 陈阵. 硫化镉/石墨烯复合光催化剂的微波水热合成及DFT研究[J]. 材料导报, 2019, 33(10): 1602-1608.
[7] 解婕, 包桂蓉, 孟一鸣, 杨智翔, 何涛. 超临界甲醇中2,3-二氢苯并呋喃加氢脱氧的理论研究[J]. 材料导报, 2018, 32(6): 977-982.
[8] 赵兴华, 刘维慧, 李春, 元光. NO3为配体的超卤素/飙卤素的理论研究[J]. 材料导报, 2018, 32(20): 3531-3534.
[9] 栾扬,赵志曼,全思臣,曾众,吴佳丽,梁祎. 基于密度泛函理论研究磷建筑石膏晶体表面吸附丁二酸转晶机理[J]. 《材料导报》期刊社, 2018, 32(12): 2118-2123.
[10] 刘建国, 安振涛, 张倩, 杜仕国, 姚凯, 王金. 硝酸羟胺的热稳定性评估及热分解机理研究*[J]. 《材料导报》期刊社, 2017, 31(4): 145-152.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed