Please wait a minute...
材料导报  2018, Vol. 32 Issue (20): 3517-3523    https://doi.org/10.11896/j.issn.1005-023X.2018.20.005
  无机非金属及其复合材料 |
氧化铝纤维含量对陶瓷基摩擦材料性能的影响
张翔1,2, 甘春雷2,3, 黎小辉2,3, 张辉1, 郑开宏2,3, 农登2,3
1 湖南大学材料科学与工程学院,长沙 410082;
2 广东省材料与加工研究所,广州 510650;
3 广东省金属强韧化技术与应用重点实验室,广州 510650;
Effect of Alumina Fiber Content on the Performance of Ceramic-matrix Friction Materials
ZHANG Xiang1,2, GAN Chunlei2,3, LI Xiaohui2,3, ZHANG Hui1, ZHENG Kaihong2,3,
NONG Deng2,3
1 College of Materials Science and Engineering, Hunan University, Changsha 410082;
2 Guangdong Institute of Materials and Processing, Guangzhou 510650;
3 Guangdong Provincial Key Laboratory for Technology and Application of Metal Toughening, Guangzhou 510650;
下载:  全 文 ( PDF ) ( 5609KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以工业废渣粉煤灰作为主要陶瓷组分,氧化铝纤维为增强相,采用冷压成型-热压固化两步法制备了氧化铝纤维增强陶瓷基摩擦材料,通过定速式摩擦磨损试验机研究了氧化铝纤维含量对陶瓷基摩擦材料性能的影响规律,并借助SEM观察磨损后样品的表面形貌,揭示了其摩擦磨损机理。结果表明:随着氧化铝纤维含量的增加,陶瓷基摩擦材料的孔隙率与密度不断增加,而硬度则先降低后上升然后再略降低;摩擦系数随氧化铝纤维含量的增加呈现出先降低后上升的趋势,当氧化铝纤维含量为25%时,样品的摩擦系数稳定在0.60左右;添加氧化铝纤维促进了陶瓷基摩擦材料的磨损,且随其含量增加,磨损率总体上呈增大趋势;未添加氧化铝纤维的陶瓷基摩擦材料磨损形式主要为磨粒磨损和接触疲劳磨损,而添加25%氧化铝纤维的陶瓷基摩擦材料磨损形式以磨粒磨损、粘着磨损和纤维的脆性断裂为主。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张翔
甘春雷
黎小辉
张辉
郑开宏
农登
关键词:  陶瓷基摩擦材料  氧化铝纤维  粉煤灰  摩擦系数  磨损率    
Abstract: In the present study, cold press molding and thermocompression were carried out to prepare different contents of alumina fiber reinforced ceramic-matrix friction materials in terms of industrial waste residue fly ash as the main ceramic component. The effect of alumina fiber content on the performance of ceramic-matrix friction material was carefully studied by a constant speed friction tester. The surface morphology of specimens after wear were observed by SEM, and wear mechanism was also revealed. The results showed that with the increase of the content of alumina fiber, the porosity and density of ceramic-matrix friction materials were rising, and the hardness decreased first, then rose and again decreased slightly. The friction coefficient for alumina fiber reinforced ceramic-matrix friction materials has shown the trend of decreasing first and then rising. When the content of alumina fiber was 25%, the friction coefficient could be stable at 0.60. In addition, the addition of alumina fiber increased the wear rate of ceramic-matrix friction materials, and the wear rate increased with the increase of the content of alumina fiber. The results of SEM analysis showed that the main wear mechanism of ceramic-matrix friction material without adding alumina fiber was abrasive wear and fatigue wear. However, the main wear mechanism of ceramic-matrix friction material with adding the content of 25% alumina fiber was abrasive wear, adhesion wear and fiber brittle fracture.
Key words:  ceramic-matrix friction material    alumina fiber    fly ash    friction coefficient    wear rate
               出版日期:  2018-10-25      发布日期:  2018-11-22
ZTFLH:  TB332  
  TH117.1  
基金资助: 广东省科技计划项目(2015B050502006;2017A050503004;2014B030301012);广东省科学院项目(2017GDASCX-0117)
作者简介:  张翔:男,1993年生,硕士研究生,研究方向为汽车摩擦材料 E-mail:704929807@qq.com 甘春雷:通信作者,男,1977年生,博士,高级工程师,研究方向为复合材料制备与加工 E-mail:ganchunlei@163.com
引用本文:    
张翔, 甘春雷, 黎小辉, 张辉, 郑开宏, 农登. 氧化铝纤维含量对陶瓷基摩擦材料性能的影响[J]. 材料导报, 2018, 32(20): 3517-3523.
ZHANG Xiang, GAN Chunlei, LI Xiaohui, ZHANG Hui, ZHENG Kaihong,
NONG Deng. Effect of Alumina Fiber Content on the Performance of Ceramic-matrix Friction Materials. Materials Reports, 2018, 32(20): 3517-3523.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.20.005  或          http://www.mater-rep.com/CN/Y2018/V32/I20/3517
1 Niu Yange, Zeng Lingke, Liu Yanchun, et al. The present situation and prospect of researchon ceramic brake of cars[J].China Cera-mics,2009,45(4):18(in Chinese).
牛艳鸽,曾令可,刘艳春,等.汽车陶瓷刹车片的研究现状与前景[J].中国陶瓷,2009,45(4):18.
2 Hong G X.Car driving and braking system of ceramic friction mate-rial[J]. Advanced Ceramics,2015,36(1):33(in Chinese).
洪桂香.汽车传动和制动系统的陶瓷摩擦材料探秘[J].现代技术陶瓷,2015,36(1):33.
3 Ikpambese K K, Gundu D T, Tuleun L T. Evaluation of palm kernel fibers (PKFs) for production of asbestos-free automotive brake pads [J]. Journal of King Saud University-Engineering Sciences,2016,28(1):110.
4 Nandan D, Bharat S T, Bhabani K S. Evaluation of flyash-filled and aramid fibre reinforced hybrid polymer matrix composites (PMC) for friction braking applications [J]. Materials and Design,2009,30(10):4370.
5 Ma B J, Zhu J, Gao S, et al. Tribological properties of kevlar pulp reinforced friction material [J]. Tribology,2000,20(4):260(in Chinese).
马保吉,朱均,高嵩.芳纶纤维增强摩擦材料的摩擦学性能研究[J].摩擦学学报,2000,20(4):260.
6 Zhong L, Liu L, Wang Z Y, et al. Research on low resin-based friction materials reinforced by compound mineral fiber [J]. Lubrication Engineering,2016,41(3):15(in Chinese).
钟厉,刘力,王昭银,等.复合矿物纤维增强低树脂基摩擦材料性能研究[J].润滑与密封,2016,41(3):15.
7 Liu X B, Li C S, Liang P, et al. Research situation and development about the non-asbestos friction material of automotive brake pad [J]. Materials Review B: Research Papers,2013,27(11):265(in Chinese).
刘晓斌,李呈顺,梁萍,等.刹车片用无石棉摩擦材料的研究现状与发展趋势[J].材料导报:研究篇,2013,27(11):265.
8 Amutha Rani D, Yoshizawa Y, Hyuga H, et al. Tribological beha-vior of ceramic materials (Si3N4, SiC and Al2O3) in aqueous medium [J]. Journal of the European Ceramic Society,2004,24:3279.
9 Poser K, Zum Gahr K H, Schneider J. Development of Al2O3 based ceramics for dry friction systems [J]. Wear,2004,259(1):530.
10 Shi J L, Fu Y W, Li H J, et al. Effects of carbon fiber content on the performance of new advanced ceramic brake materials[J]. Journal of Materials Engineering,2013(2):45(in Chinese).
施俭亮,付业伟,李贺军,等.炭纤维含量对新型陶瓷摩擦材料性能的影响[J].材料工程,2013(2):45
11 Wang F H, Liu Y. Effects of steel fiber on tribological properties of ceramic-based friction material [J]. Tribology,2012,32(2):144(in Chinese).
王发辉,刘莹.钢纤维对陶瓷基摩擦材料摩擦学性能的影响[J].摩擦学学报,2012,32(2):144.
12 Wang F H, Liu Y. Mechanical and tribological properties of ceramic matrix friction materials with steel fiber and mullite fiber [J]. Materials & Design,2014,57(4):449.
13 Liu B W, Liu Y, Tang B, et al. Study on the influences of basalt fiber on the performance of automobile brake materials [J]. Materials Review B:Review Papers,2016,30(12):71(in Chinese).
刘伯威,刘咏,唐兵,等.玄武岩纤维对汽车摩擦材料性能的影响[J].材料导报:研究篇,2016,30(12):71.
14 Lu Z Q, Hu W J, Xie P. Effect of alumina fiber on the tribological property of composite paper-based friction material [J]. Journal of Shaanxi University of Science & Technology,2017,35(4):1(in Chinese).
陆赵情,胡文静,谢璠.氧化铝纤维对纸基摩擦材料摩擦学性能的影响[J].陕西科技大学学报,2017,35(4):1.
15 郝元恺,肖加余.高性能复合材料学[M].北京:化学工业出版社,2004.
16 Tanimoto Y, Nemoto K. Effect of sintering temperature on flexural properties of alumina fiber-reinforced, alumina-based ceramics prepared by tape casting technique [J]. Journal of Prosthodontics,2006,15(6):345.
17 Li L, Kang W M, Zhou Y X, et al. Preparation of flexible ultra-fine Al2O3 fiber mats via the solution blowing method [J]. Ceramics International,2015,41(1):409.
18 Talegaonkar R P, Gopinath K. Influence of alumina fiber content on properties of non-asbestos organic brake friction material [J]. Journal of Reinforced Plastics and Composites,2009,28(17):2069.
19 刘伯威,杨阳,黄伯云.一种陶瓷纤维增强陶瓷基汽车制动摩擦材料及其制备方法:中国,101813150A[P].2010-05-20.
20 Hua X J. The study of hybrid fibers reinforced resin-based friction materials [D]. Changchun: Jilin University,2015(in Chinese).
花晓军.混杂纤维增强树脂基摩擦材料研究[D].长春:吉林大学,2015.
21 Liu Z Y, Huang B Y, Su T, et al. Effect of fiber content on the performance of automotive friction material [J]. Tribology,1999,32(1):322(in Chinese).
刘震云,黄伯云,苏堤,等.增强纤维含量对汽车摩擦材料性能的影响[J].摩擦学学报,1999,32(1):322.
[1] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[2] 赖榕永, 王温馨, 谢雯倩, 丁益民. MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能[J]. 材料导报, 2019, 33(z1): 219-222.
[3] 邓恺, 黎红兵, 李响, 吴凯. 不同养护条件下钢渣与粉煤灰改性磷酸镁水泥的性能研究[J]. 材料导报, 2019, 33(z1): 264-268.
[4] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[5] 张默, 王诗彧. 常温制备赤泥-低钙粉煤灰基地聚物的试验和微观研究[J]. 材料导报, 2019, 33(6): 980-985.
[6] 李海南, 马保国, 谭洪波, 梅军鹏. TiO2纳米颗粒对水泥-粉煤灰体系水化硬化及氯离子侵蚀的影响[J]. 材料导报, 2019, 33(4): 630-633.
[7] 苏新, 王振生, 彭真, 郭建亭. 不同环境气氛中NiAl-2.5Ta-7.5Cr-1B-5Co-2.5Re合金的摩擦磨损特性[J]. 材料导报, 2019, 33(2): 288-292.
[8] 曹润倬, 周茗如, 周群, 何勇. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.
[9] 王义超, 余江滔, 魏琳卓, 徐世烺. 超高韧性氯氧镁水泥基复合材料的耐水性能[J]. 材料导报, 2019, 33(16): 2665-2670.
[10] 苏英, 邱慧琼, 贺行洋, 杨进, 王迎斌, 曾三海, Bohumír Strnadel. 弱碱激发超细粉煤灰水化产物结构分析[J]. 材料导报, 2019, 33(14): 2376-2380.
[11] 王德辉, 史才军, 贾煌飞. 石灰石粉和含铝相辅助性胶凝材料的协同作用对混凝土抗碳化性能的影响[J]. 材料导报, 2018, 32(17): 2986-2991.
[12] 钱如胜,张云升,张宇,杨永敢. 水泥-粉煤灰体系早龄期液相离子浓度与电导率的关系[J]. 《材料导报》期刊社, 2018, 32(12): 2066-2071.
[13] 李北罡,王 敏. Fe/CTS/AFA复合材料对染料的高效吸附[J]. 《材料导报》期刊社, 2018, 32(10): 1606-1611.
[14] 张耀君, 余淼, 张力, 张懿鑫, 康乐. 一种新型石墨烯-粉煤灰基地质聚合物复合材料的制备及光催化应用*[J]. CLDB, 2017, 31(9): 50-56.
[15] 李苗苗, 陈平, 王辉, 李建超. 粉煤灰微珠填充环氧树脂复合涂层耐磨性能的研究*[J]. 《材料导报》期刊社, 2017, 31(4): 36-40.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed