Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (6): 161-170    https://doi.org/10.11896/j.issn.1005-023X.2017.06.031
  计算模拟 |
熔融聚合耐高温聚酰胺的非等温结晶动力学研究
王忠强1, 2, 胡国胜1, 张静婷1, 徐久升2, 邵正杰3
1 中北大学高分子与生物工程研究所, 太原 030051;
2 广东中塑新材料有限公司, 东莞 523860;

3 华南师范大学物理与电信工程学院, 广州 510006
Study on Non-isothermal Crystallization Kinetics of High-temperature
Resistant Polyamides Prepared by Melt Polymerization
WANG Zhongqiang1,2, HU Guosheng1, ZHANG Jingting1, XU Jiusheng2, SHAO Zhengjie3
1 Institute of Macromolecules and Bioengineering,North University of China,Taiyuan 030051;
2 Guangdong Sinoplast
Advanced Material Co. Ltd., Dongguan 523860;
3 School of Physics and Telecommunication
Engineering,South China Normal University, Guangzhou 510006
下载:  全 文 ( PDF ) ( 2752KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过差示扫描量热仪(DSC)研究了熔融聚合耐高温聚酰胺10T以及10T/11树脂在不同降温速率下的非等温结晶行为。通过Jeziorny法、Ozawa法以及Mo法分析了PA10T和PA10T/11的非等温结晶动力学,并采用Kissinger法、Takhor法以及Vyazovkin法计算了体系的结晶活化能。结果表明,在初期结晶阶段,PA10T和PA10T/11晶体的生长方式是一维针状生长和二维片状生长并存,同时存在异相成核现象;Jeziorny法、Mo法适合研究PA10T和PA10T/11树脂的非等温结晶过程,而Ozawa法不适合研究其非等温结晶过程;随着11-氨基十一酸含量增加,非等温结晶活化能的绝对值呈现先减小后增大再减小的变化趋势,说明结晶速率呈现先增加后减少再增加的变化趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王忠强
胡国胜
张静婷
徐久升
邵正杰
关键词:  熔融聚合  耐高温聚酰胺  氨基十一酸  结晶动力学  非等温结晶    
Abstract: Poly(decamethylene terephthalamide) (PA10T) and decamethylene terephthalamide-aminoundecanoic copolyamide (PA10T/11) were prepared by melt polymerization. The non-isothermal crystallization behaviors of PA10T and PA10T/11 at di-fferent cooling rates were studied by means of differential scanning calorimetry (DSC). Avrami and Ozawa equations, along with the Mo equation were applied to obtain the non-isothermal crystallization kinetics of PA10T and PA10T/11. Moreover, the activation energy of non-isothermal crystallization of PA10T and PA10T/11 was explored by Kissinger, Takhor and Vyazovkin equations, respectively. The results showed that the mode of the nucleation and crystal growth may be the mixture with one-dimensional, needle-like and two-dimensional, circular. Meanwhile, there was heterogeneous nucleation phenomenon during the non-isothermal crystallization process. Jeziorny and Mo equations well described the non-isothermal crystallization kinetics of PA10T and PA10T/11, while Ozawa equation failed. With the increasing contents of 11-aminoundecanoic acid, the absolute values of activation energy of non-isothermal crystallization first decreased, then increased and finally decreased, which revealed that crystallization rates first increased, then decreased and finally increased.
Key words:  melt polymerization    high-temperature resistant polyamides    aminoundecanoic acid    crystallization kinetics    non-isothermal crystallization
               出版日期:  2017-03-25      发布日期:  2018-05-02
ZTFLH:  TQ323.6  
基金资助: 国家科技支撑计划项目(2013BAE02B01);广东省产学研结合项目(2013B090500003);广东省特派员工作站项目(2014A090906002)
通讯作者:  胡国胜:男,1959年生,博士,教授,博士研究生导师,研究方向为高分子合成与共混改性,E-mail:huguosheng@nuc.edu.cn   
作者简介:  王忠强:男,1985年生,博士研究生,研究方向为高分子合成与共混改性,E-mail:jaw1985@sina.com
引用本文:    
王忠强, 胡国胜, 张静婷, 徐久升, 邵正杰. 熔融聚合耐高温聚酰胺的非等温结晶动力学研究[J]. 《材料导报》期刊社, 2017, 31(6): 161-170.
WANG Zhongqiang, HU Guosheng, ZHANG Jingting, XU Jiusheng, SHAO Zhengjie. Study on Non-isothermal Crystallization Kinetics of High-temperature
Resistant Polyamides Prepared by Melt Polymerization. Materials Reports, 2017, 31(6): 161-170.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.06.031  或          http://www.mater-rep.com/CN/Y2017/V31/I6/161
1 Wang W Z, Huang A M, Liu A X, et al. Synthesis and characte-rization of long chain semiaromatic polyamides based on undecanediamine[J]. J Wuhan University of Technology:Mater Sci Ed,2012,27(4):689.
2 Wang W Z, Zhang Y H. Environment-friendly synthesis of long chain semiaromatic polyamides[J]. Express Polym Lett,2009,3(8):470.
3 Zhang G, Zhou Y X, Kong Y, et al. Semiaromatic polyamides containing ether and different numbers of methylene (2-10) units: Synthesis and properties[J]. RSC Adv,2014,4(108):63006.
4 Wang L H, Calleja F J B, Kanamoto T, et al. The characterization and properties of nylon 13,13[J]. Polymer,1993,34(22):4688.
5 Hu G S, Ding Z Y, Li Y C, et al. Crystalline morphology and mel-ting behavior of nylon11/ethylene-vinyl alcohol/dicumyl peroxide blends[J]. J Polym Res,2009,16(3):263.
6 Cui X W, Yan D Y, Wang Y P. Isothermal and nonisothermal crystallization kinetics of novel even-odd nylon 1011[J]. J Appl Polym Sci,2005,97(4):1637.
7 Liu M Y, Zhao Q X, Wang Y D, et al. Melting behaviors, isothermal and non-isothermal crystallization kinetics of nylon 1212[J]. Polymer,2003,44(8):2537.
8 Zhang X K, Xie T X, Yang G S. Isothermal crystallization and mel-ting behaviors of nylon 11/nylon 66 alloys by in situ polymerization[J]. Polymer,2006,47(6):2116.
9 Wang Y D, Fu P, Li X G, et al. The isothermal melt crystallization kinetics of nylon 612[J]. Polym Mater Sci Eng,2011,27(2):103(in Chinese).
王玉东, 付鹏, 李晓光, 等. 尼龙612的等温结晶动力学[J]. 高分子材料科学与工程,2011,27(2):103.
10 Ozawa T. Kinetics of non-isothermal crystallization[J]. Polymer,1971,12(3):150.
11 Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by d.s.c.[J]. Polymer,1978,19(10):1142.
12 Ziabicki A. Theoretical analysis of oriented and non-isothermal crystallization. Ⅱ:Extension of the kolmogoroff-avrami-evans theory onto processes with variable rates and mechanisms[J]. Colloid Polym Sci,1974,252(6):433.
13 Mandelkern L. Crystallization of polymers[M]. NewYork: Mc Graw-Hill Press,1964.
14 Patel R M, Bheda J H, Spruiell J E. Dynamics and structure deve-lopment during high-speed melt spinning of nylon 6. Ⅱ. Mathematical modeling[J]. J Appl Polym Sci,1991,42(6):1671.
15 Zhang Z Y. Theoretical analysis of kinetics of nonisothermal crystallization of polymers[J]. Chin J Polym Sci,1994(3):256.
16 Liu T X, Mo Z S, Wang S E, et al. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone)[J]. Polym Eng Sci,1997,37(3):568.
17 Sharples A. Introduction to polymer crystallization[M]. London: Edward Arnold,1996:122
18 Gao G H, Li W H, Yan D Y. Investigation on crystallization kine-tics of nylon 1218[J]. Acta Polym Sin,2004,1(4):465(in Chinese).
高光辉, 李卫华, 颜德岳. 尼龙1218的等温及非等温结晶动力学研究[J]. 高分子学报,2004,1(4):465.
19 López L C, Wilkes G L. Non-isothermal crystallization kinetics of poly(p-phenylene sulphide)[J]. Polymer,1989,30(5):882.
20 Supaphol P. Nonisothermal bulk crystallization and subsequent mel-ting behavior of syndiotactic polypropylenes: Crystallization from the melt state[J]. J Appl Polym Sci,2000,78(2):338.
21 Zhang Z Y. Study on theory and method of crystallization kinetics of polymers[D]. Tianjin: Tianjin Polytechnic University,2006(in Chinese).
张志英. 聚合物结晶动力学理论和方法研究[D]. 天津: 天津工业大学,2006.
22 Sajkiewicz P, Carpaneto L, Wasiak A. Application of the Ozawa model to non-isothermal crystallization of poly(ethylene terephthalate)[J]. Polymer,2001,42(12):5365.
23 Seo Y S. Nonisothermal crystallization kinetics of polytetrafluoroethylene[J]. Polym Eng Sci,2000,40(6):1293.
24 Cazé C, Devaux E, Crespy A, et al. A new method to determine the Avrami exponent by d.s.c. studies of non-isothermal crystallization from the molten state[J]. Polymer,1997,38(3):497.
25 Mo Z S. A method for the non-isothermal crystallzation kinetics of polymers[J]. Acta Polym Sin,2008,1(7):656.
26 Liu Y, Yang G S. Non-isothermal crystallization kinetics of polya-mide-6/graphite oxide nanocomposites[J]. Thermochim Acta,2010,500(1):13.
27 Shi J S, Yang X J, Wang X, et al. Non-isothermal crystallization kinetics of nylon 6/attapulgite nanocomposites[J]. Polym Test,2010,29(5):596.
28 Zhang Q X, Mo Z S. Melting crystallization behavior of nylon 66[J]. Chin J Polym Sci,2001,19(3):237.
29 Zhang Q X, Zhang Z H, Zhang H F, et al. Isothermal and nonisothermal crystallization kinetics of nylon-46[J]. J Polym Sci Part B,2002,40(16):1784.
30 Ma Y L, Hu G S, Ren X L, et al. Non-isothermal crystallization kinetics and melting behaviors of nylon 11/tetrapod-shaped ZnO whisker (T-ZnOw) composites[J]. Mater Sci Eng A,2007,s460-461(1):611.
31 Liu M Y, Zhao Q X, Wang Y D, et al. Melting behaviors, isothermal and non-isothermal crystallization kinetics of nylon 1212[J]. Polymer,2003,44(8):2537.
32 Kissinger H E. Variation of peak temperature with heating rate in differential thermal analysis [J]. J Res National Bureau Standards,1956,57(4):217.
33 Takhor R. Advances in nucleation and crystallization of glasses[M]. Columbus: American Ceramics Society,1971:166.
34 Vyazovkin S, Sbirrazzuoli N. Isoconversional approach to evaluating the Hoffman-Lauritzen Parameters (U* and Kg) from the overall rates of nonisothermal crystallization[J]. Macromolecular Rapid Commun,2004,25(6):733.
35 Vyazovkin S, Dranca I. Isoconversional analysis of combined melt and glass crystallization data[J]. Macromolecular Chem Phys,2006,207(1):20.
36 Achilias D S, Papageorgiou G Z, Karayannidis G P. Isothermal and nonisothermal crystallization kinetics of poly(propylene terephthalate)[J]. J Polym Sci Part B,2004,42(20):3775.
[1] 李绍龙, 徐艺, 陈农田, 杨文锋. 利用Avrami和莫志深方法研究聚丁二酸丁二醇酯-聚丁二酸二甘醇酯多嵌段共聚物的非等温结晶动力学[J]. 材料导报, 2018, 32(16): 2882-2888.
[2] 潘书万,庄琼云,陈松岩,黄巍,李成,郑力新. 硅(100)衬底表面快速热退火制备硒纳米晶薄膜的结晶动力学[J]. 《材料导报》期刊社, 2018, 32(11): 1928-1931.
[3] 王忠强, 胡国胜, 张静婷, 徐久升, 邵正杰. 熔融聚合耐高温聚酰胺的等温结晶动力学研究*[J]. 《材料导报》期刊社, 2017, 31(4): 137-144.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed