Please wait a minute...
材料导报  2024, Vol. 38 Issue (18): 23020262-11    https://doi.org/10.11896/cldb.23020262
  无机非金属及其复合材料 |
Ti3SiC2陶瓷材料制备方法研究进展
孙国栋*, 康凯, 解静, 贾研, 郑斌, 吕龙飞, 田清来, 唐宇星
长安大学材料科学与工程学院,西安 710064
Research Progress in Preparation of Ti3SiC2 Ceramic Materials
SUN Guodong*, KANG Kai, XIE Jing, JIA Yan, ZHENG Bin, LYU Longfei, TIAN Qinglai, TANG Yuxing
School of Materials Science and Engineering, Chang’an University, Xi’an 710064, China
下载:  全 文 ( PDF ) ( 9699KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 作为MAX相家族重要成员,钛硅化碳Ti3SiC2除了具有耐高温、抗氧化性能外,还具有与金属类似的优异导电性、导热性和可加工性,在电接触材料、热交换器构件材料、润滑材料等领域展现出较大的应用潜力,成为当前一种备受关注的新型陶瓷材料。现有的Ti3SiC2制备方法主要有无压烧结、热压烧结、热等静压、放电等离子烧结、前驱体转换陶瓷、反应熔体浸渗法、熔盐法、化学气相沉积、物理气相沉积等。本文首先阐述了Ti3SiC2材料的结构与性能,然后重点综述了国内外Ti3SiC2陶瓷材料的制备方法,最后展望了Ti3SiC2陶瓷材料的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙国栋
康凯
解静
贾研
郑斌
吕龙飞
田清来
唐宇星
关键词:  钛硅化碳  MAX相  陶瓷材料  制备方法  结构与性能    
Abstract: As an important member of the MAX phase family, titanium silicified carbon Ti3SiC2not only has high temperature resistance and oxidation resistance, but also has excellent electrical conductivity, thermal conductivity and machinability similar to metal. It has shown strong application potential in the fields of electrical contact materials, heat exchanger component materials, lubricating materials and so on, and has become a new ceramic material that attracts much attention. The existing preparation methods of Ti3SiC2 are mainly pressureless sintering, hot pressed sintering, hot isostatic pressure, spark plasma sintering, polymer-derived ceramic, reactive melt infiltration method, molten salt synthesis, chemical vapor deposition, physical vapor deposition, etc. In this paper, the structure and properties of Ti3SiC2 materials are described firstly, and then the preparation methods of Ti3SiC2 ceramic materials at home and abroad are reviewed emphatically. Finally, the application prospect of Ti3SiC2 ceramic materials is prospected.
Key words:  Ti3SiC2    MAX phase    ceramic material    preparation method    structure and performance
发布日期:  2024-10-12
ZTFLH:  TB34  
基金资助: 国家自然科学基金(52272034);陕西省重点研发计划(2021GY-252)
通讯作者:  *孙国栋,通信作者,长安大学材料科学与工程学院副教授、硕士研究生导师。2001年7月于山东理工大学获得工学学士学位,2005年4月、2010 年12月于西北工业大学分别获得工学硕士、博士学位,2011年到长安大学工作至今。目前主要从事C/C复合材料的改性及涂层制备、力学性能、阻尼性能以及微结构表征方面的研究工作。发表论文20余篇,包括Ceramics International、Advanced Engineering Materials、Materials Chemistry and Physics、《复合材料学报》等。sunguodong@chd.edu.cn   
引用本文:    
孙国栋, 康凯, 解静, 贾研, 郑斌, 吕龙飞, 田清来, 唐宇星. Ti3SiC2陶瓷材料制备方法研究进展[J]. 材料导报, 2024, 38(18): 23020262-11.
SUN Guodong, KANG Kai, XIE Jing, JIA Yan, ZHENG Bin, LYU Longfei, TIAN Qinglai, TANG Yuxing. Research Progress in Preparation of Ti3SiC2 Ceramic Materials. Materials Reports, 2024, 38(18): 23020262-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23020262  或          http://www.mater-rep.com/CN/Y2024/V38/I18/23020262
1 Liang B Y, Jin S Z, Liu H, et al. Journal of Changchun University of Technology, 2006(1), 52(in Chinese).
梁宝岩, 金松哲, 刘鹤, 等. 长春工业大学学报, 2006(1), 52.
2 Jeitschko W, Nowotny H. Monatshefte Für Chemie-Chemical Monthly, 1967, 98(2), 329.
3 Barsoum M W. Progress in Solid State Chemistry, 2000, 28(1), 201.
4 Ho-Duc L H, EI-Raghy T, Barsoum M W. Journal of Alloys and Compounds, 2003, 350, 303.
5 Zhu D Y, Zhu J Q, Mei B C, et al. Jiangsu Ceramics, 2005, 38(4), 22(in Chinese).
朱达炎, 朱教群, 梅炳初, 等. 江苏陶瓷, 2005, 38(4), 22.
6 Zhu J, Zhang F Z, Xie Y J, et al. Materials Reports, 2021, 35(23), 23025(in Chinese).
朱界, 张方舟, 谢有菊, 等. 材料导报, 2021, 35(23), 23025.
7 Zhang F Y, Zhao L P, Yan S, et al. Ceramics International, 2020, 46 (10), 16298.
8 Zhu J Q, Mei B C, Chen Y L. Materials Science and Engineering, 2001, 4(2), 105(in Chinese).
朱教群, 梅炳初, 陈艳林. 材料科学与工程, 2001, 4(2), 105.
9 Arunajatesan S, Carim A H. Materials Letters, 1994, 20(5), 319.
10 Medvedeva N, Enyashin A, Ivanovskii A. Journal of Structural Chemistry, 2011, 52(4), 785.
11 Zhou Y C, Zhang H B, Liu M Y, et al. Materials Research Innovations, 2004, 8(8), 97.
12 Zhou Y, Sun Z. Materials Research Innovations, 2000, 5(1), 3.
13 Zhou Y, Sun Z. Journal of Physics:Condensed Matter, 2000, 12, L457.
14 Luan S R. The modification of Ti3SiC2 and Ti3C2-basedmaterials and their performance of lithiumion batteries. Ph.D. Thesis, Yanshan University, China, 2022(in Chinese).
栾孙锐. Ti3SiC2和Ti3C2基材料的改性及其锂离子电池性能的研究. 博士学位论文, 燕山大学, 2022.
15 Li S G, Gan Y Q, Xue J X, et al. Aip Advances, 2018, 8(1), 2158.
16 Fan X M, Ma Y Z, Dang X L, et al. Materials, 2020, 13(2), 328.
17 Myhra S, Summers J, Kisi E H. Materials Letters, 1999, 39(1), 6.
18 Ren S F, Meng J H, Wang J B, et al. Tribology Letters, 2010, 37(1), 59.
19 Li S, Xie J, Zhao J, et al. Materials Letters, 2002, 57(1), 119.
20 Li S, Song G M, Yang Z. Journal of the European Ceramic Society, 2012, 32(12), 3435.
21 Gilbert C J, Bloyer D R, Barsoum M W, et al. Scripta Materialia, 2000, 42(8), 761.
22 Pang W K, Low I M, O’Connor B H, et al. Neutron and X-ray Scattering Advancing Materials Research, 2009, 6(1), 243.
23 Oo Z, Low I M, O’Connor B H. Physica B Condensed Matter, 2006, 2(1), 499.
24 Reiffenstein F, Nowotny H, Benesovsky F. Monatshefte Für Chemie, 1996, 97(5), 1428.
25 Racault C, Langlais F, Naslain R. Journal of Materials Science, 1994, 29(13), 3384.
26 Zhang H L, Su R R, Shi L Q, et al. Journal of the European Ceramic Society, 2018, 38(4), 1253.
27 Jeitschko W, Nowotny H. Monatshefte für Chemie-Chemical Monthly, 1967, 98(2), 329.
28 Racault C, Langlais F, Naslain R. Journal of Materials Science, 1994, 29(13), 3384.
29 Yang F, Li C S, Tang H, et al. Chinese Journal of Vacuum Science and Technology, 2012, 32(9), 825(in Chinese).
杨锋, 李长生, 唐华, 等. 真空科学与技术学报, 2012, 32(9), 825.
30 Yang F, Li C S, Tang H, et al. Chines Journal of Inorganic Chemistry, 2012, 28(4), 703(in Chinese).
杨锋, 李长生, 唐华, 等. 无机化学学报, 2012, 28(4), 703.
31 Xue M Q. Порошковая Металлургия, 2014, 498(7), 19.
32 Xu W, Xue M, Bai J. Inorganic Chemicals Industry, 2019, 322(8), 456.
33 Sun Z M, Zou Y, Tada S, et al. Scripta Materialia, 2006, 55(11), 111.
34 Barsoum M W, Farber L, El-Raghy T. Metallurgical and Materials Transactions A, 1999, 30(7), 1727.
35 Barsoum M W, Radovic M. Annual Review of Materials Research, 2011, 41(1), 195.
36 Antti M L, Kero I, Cheng Y B, et al. Ceramics International, 2012, 38(3), 1999.
37 Yuan H D, Yin H F, Pan L Q, et al. Hot Working Technology, 2012, 41(2), 126(in Chinese).
袁蝴蝶, 尹洪峰, 潘丽清, 等. 热加工工艺, 2012, 41(2), 126.
38 Jia H, Yin H F, Yuan H D, et al. Chinese Ceramics, 2019, 55(2), 34(in Chinese).
贾换, 尹洪峰, 袁蝴蝶, 等. 中国陶瓷, 2019, 55(2), 34.
39 El-Raghy T, Zavaliangos A, Barsoum M W, et al. Journal of the American Ceramic Society, 1997, 80(2), 513.
40 El-Raghy T, Barsoum M W, Zavaliangos A, et al. Journal of the American Ceramic Society, 1999, 82(10), 2855.
41 Klemm H, Tanihata K, Miyamoto Y. Journal of Materials Science, 1993, 28(6), 1557.
42 Li J F, Sato F. Journal of Materials Science Letters, 1999, 18(6), 1595.
43 Zhou Y C, Sun Z M. Materials Science and Technology, 2000, 16, 461.
44 Gao N F, Miyamoto, Tanihat Y. Journal of the Society of Materials Science, 1998, 47(10), 994.
45 Ishiyama M. Journal of the Japan Society of Powder and Powder Metallurgy, 1993, 40(1), 931.
46 Shon I J, Munir A. Materials Science and Engineering A, 1995, 202(8), 256.
47 Xiong Y, Liu C. Advanced Ceramics, 2016, 37(4), 227(in Chinese).
熊焰, 刘冲. 现代技术陶瓷, 2016, 37(4), 227.
48 Nygen M, Shen Z. Solid State Science, 2003, 5(1), 125.
49 Han R, Pan W, Fang M, et al. High-performance Ceramics IV, 2005, 8(4), 1046.
50 Islak B Y, Ayas E. Ceramics International, 2019, 6(3), 12297.
51 Gao N F, Li J T, Zhang D, et al. Journal of the European Ceramic Society, 2002, 22(13), 2365.
52 Liang B Y. Materials Research Innovations, 2013, 17(7), 448.
53 Zhao X R, Ji T Z, Niu S, et al. Journal of Solid Rocket Technology, 2022, 45(3), 446(in Chinese).
赵晓冉, 季铁正, 牛帅, 等. 固体火箭技术, 2022, 45(3), 446.
54 Zhu S B, Zhang Q, Meng X L, et al. Aerospace Manufacturing Technology, 2019, 3(3), 1(in Chinese).
朱世步, 张强, 孟祥利, 等. 航天制造技术, 2019, 3(3), 1.
55 Luo Y M, Zheng Z M, Mei X N, et al. Materials Chemistry and Physics, 2009, 8(3), 26.
56 Luo Y M, Zhang Z, Wang X, et al. International Journal of Applied Ceramic Technology, 2010, 7(6), 73.
57 Luo Y M, Mei X N, Zheng Z M, et al. Rare Metal Materials and Engineering, 2009, 38(S2), 415(in Chinese).
罗永明, 梅雪凝, 郑知敏, 等. 稀有金属材料与工程, 2009, 38(S2), 415.
58 Yang J, Dong S, Ding Y, et al. International Journal of Applied Ceramic Technology/Functional Ceramics, 2010, 93(8), 2117.
59 Yang J, Zhang X, Zhen W, et al. Ceramics International, 2012, 38(4), 3509.
60 Wang Q. Synthesis and properties of two machinable ceramics Ti3SiC2 and Y4Al2O9. Ph.D. Thesis, Tianjin University, China, 2012(in Chinese).
汪乾. 两种可加工陶瓷Ti3SiC2, Y4Al2O9的合成制备与性能. 博士学位论文, 天津大学, 2012.
61 Wang Q, Hu C, Cai S, et al. International Journal of Applied Ceramic Technology, 2013, 11(5), 911.
62 Li F Z, Zhang H B, Wang Q, et al. Journal of the American Ceramic Society, 2014, 97(9), 2731.
63 Nan B, Yin X, Zhang L, et al. Journal of the American Ceramic Society, 2011, 94(4), 969.
64 Lenz F, Krenkel W. Materials Science and Engineering, 2011, 20(18), 1757.
65 Liu H, Wan H. In:China Aerospace Third Professional Information Network Thirty-seventh Technical Exchange Meeting and the First Joint Conference on Space and Space Power. Xi’an, 2016, pp.699(in Chinese).
刘会, 万红. 中国航天第三专业信息网第三十七届技术交流会暨第一届空天动力联合会议. 西安, 2016, pp.699.
66 Liu H. Study on the preparation and phase formation of Ti3SiC2. Master’s Thesis, National University of Defense Technology, China, 2016(in Chinese).
刘会. Ti3SiC2的制备及相形成规律的研究. 硕士学位论文, 国防科学技术大学, 2016.
67 Hosseinizadeh H. Ceramics International, 2020, 46(14), 22208.
68 Fan X, Yin X, Wang L, et al. International Journal of Refractory Metals, 2014, 45(7), 1.
69 Guo X, Yang S Y, Gao L, et al. Chinese Ceramics, 2013, 49(3), 13(in Chinese).
郭学, 杨世源, 高龙, 等. 中国陶瓷, 2013, 49(3), 13.
70 Guo X, Wang J, Yang S, et al. Materials Science Forum, 2017, 898(3), 1611.
71 Cheng B J, Yao C, Huang J T, et al. Advances in Applied Ceramics, 2022, 35(5), 629.
72 Dash A, Sohn Y J, Vaen R, et al. Journal of the European Ceramic Society, 2019, 39(13), 3651.
73 Chen D, Tian X, Wang H, et al. International Journal of Refractory Metals & Hard Materials, 2014, 47, 102.
74 Nan B Y, Yin X W, Zhang L T, et al. Journal of the American Ceramic Society, 2011, 94(4), 969.
75 Ma Y Z, Yin X W, Fan X M, et al. International Journal of Applied Ceramic Technology, 2014, 12(1), 71.
76 Nickl J J, Schweitzer K K, Luxenberg P. Less Common Metals, 1972, 26(4), 335.
77 Fakih H, Jacques S, Berthet M P. Surface and Coatings Technology, 2006, 201(3), 3748.
78 Jacques S, Fakih H. Thin Solid Films, 2010, 518(7), 5071.
79 Lin T C, Hon M H. Ceramics International, 2008, 34(6), 631.
80 Yang G Y. Study on preparation of Ti-Si-C composite coatings by CVD method in TiCl4-CH3SiCl3-H2-Ar system. Master’s Thesis, Central South University, China, 2014(in Chinese).
杨钢宜. TiCl4-CH3SiCl3-H2-Ar体系下CVD法制备Ti-Si-C复合涂层的研究. 硕士学位论文, 中南大学, 2014.
81 Yang G Y, Li G D, Xiong X, et al. Materials Science and Engineering of Powder Metallurgy, 2014, 19(5), 8(in Chinese).
杨钢宜, 李国栋, 熊翔, 等. 粉末冶金材料科学与工程, 2014, 19(5), 8.
82 Zhu J, Mao S J, Liu Y Y, et al. Journal of Materials Science and Engineering, 2022, 40(6), 961(in Chinese).
朱界, 茅思佳, 刘瑶瑶, 等. 材料科学与工程学报, 2022, 40(6), 961.
83 Palmquist J P, Jansson U, Seppänen T, et al. Applied Physics Letters, 2002, 81(5), 835.
84 Liu W H, Hu X Y, Zhang J, et al. Laser & Optoelectronics Progress, 2006, 14(5), 421.
85 Ao Y, Hu S, Hua L, et al. Laser Technology, 2003, 9(3), 47.
86 Eklund P, Palmquist J P, Wilhelmsson O, et al. Tribology Letters, 2004, 17(4), 977.
87 Lange C, Barsoum M W, Schaaf P. Applied Surface Science, 2007, 254(4), 1232.
88 Lange C, Hopfeld M, Wilke M, et al. Physica Status Solidi, 2012, 209(3), 545.
89 Hu J Q, Xie M, Chen J L, et al. Acta Physica Sinica, 2017, 66(5), 57.
90 Zhai H X, Wang C A. Electric Drive for Locomotives, 2003, 13(8), 43(in Chinese).
翟洪祥, 汪长安. 机车电传动, 2003, 13(8), 43.
91 Fu Z Y, Li J B. Beijing Science Press, 2007, 1, 235.
92 Luo Y M, Eishuan L M, Zhou Y C, et al. Corrosion Science, 2006, 48(7), 650.
93 Luo Y M, Eishuan L M, Zhou Y C, et al. Journal of the European Ceramic Society, 2005, 25(3), 1033.
94 Luo Y M, Eishuan L M, Zhou Y C, et al. Journal of the European Ceramic Society, 2003, 23(1), 1957.
95 Qu X H, Zhang L, Wu P F, et al. Materials Science and Technology, 2017, 25(2), 1(in Chinese).
曲选辉, 章林, 吴佩芳, 等. 材料科学与工艺, 2017, 25(2), 1.
96 Zhang X W, Wang M Z, Chen S J. Railway Locomotive & Car, 2021, 41(5), 163(in Chinese).
张兴旺, 王明智, 陈澍军. 铁道机车车辆, 2021, 41(5), 163.
97 He C C. Preparation and properties of Ti3SiC2 new high temperature absorbing material. Master’s Thesis, Xidian University, China, 2014(in Chinese).
何创创. Ti3SiC2新型耐高温吸波材料的制备及性能研究. 硕士学位论文, 西安电子科技大学, 2014.
98 Liu J, Mei B C, Zhu J Q. Jiangsu Ceramics, 2003, 36(3), 9(in Chinese).
刘俊, 梅炳初, 朱教群. 江苏陶瓷, 2003, 36(3), 9.
99 Liu G M, Zhou Y C. The Chinese Journal of Nonferrous Metals, 2002(4), 629(in Chinese).
刘光明, 周延春. 中国有色金属学报, 2002(4), 629.
[1] 李再久, 夏臣平, 刘明诏, 金青林. 骨组织工程镁基支架的制备研究进展[J]. 材料导报, 2024, 38(4): 22050324-11.
[2] 莫琛, 向阳, 陈坤, 张稳, 彭志航, 文瑾, 曹建辉. Al2O3f/Al2O3陶瓷基复合材料研究进展[J]. 材料导报, 2024, 38(18): 23030126-.
[3] 吴船江, 张亮, 王曦, 陈晨, 卢晓. 陶瓷钎焊用钎料的国内外研究进展[J]. 材料导报, 2024, 38(16): 23050146-17.
[4] 高瑞泽, 王亚强, 张金钰, 杨红艳, 刘刚, 孙军. 梯度结构金属材料的制备方法和力学性能研究进展[J]. 材料导报, 2024, 38(15): 23040269-12.
[5] 穆锐, 刘元雪, 欧忠文, 胡志德, 姚未来, 成鑫磊, 雷屹欣, 杨秀明. 气凝胶复合材料的制备及保温隔热应用进展[J]. 材料导报, 2024, 38(14): 22110298-14.
[6] 王兰喜, 何延春, 王虎, 吴春华, 李林. 石墨烯导热纸研究进展[J]. 材料导报, 2023, 37(3): 20110183-9.
[7] 李宇, 王建敏, 张弦, 欧阳顺利. 高附加值煤气化渣基材料开发研究进展[J]. 材料导报, 2023, 37(23): 22040354-12.
[8] 张星星, 高相东, 董余兵, 段灯, 李效民. SiO2气凝胶@聚合物复合材料的制备方法及性能研究进展[J]. 材料导报, 2023, 37(21): 22040191-11.
[9] 丁健翔, 夏欣欣, 张凯歌, 丁宽宽, 马成建, 张培根, 孙正明. 不同制备温度下Ti2SnC增强银基复合材料的物相、微观组织和物理性能演变[J]. 材料导报, 2023, 37(16): 22040006-8.
[10] 朱万利, 包建勋, 张舸, 崔聪聪. 金刚石/碳化硅复合材料的研究进展[J]. 材料导报, 2023, 37(10): 22100263-8.
[11] 闫时雨, 纪文涛, 谢克强, 袁晓磊. 宽禁带半导体β-Ga2O3单晶制备工艺研究进展[J]. 材料导报, 2022, 36(Z1): 21050183-6.
[12] 陈杰, 樊正阳, 毛华明, 尹俊刚, 李耀, 代伟, 杨宏伟. 镀银铜纳米颗粒的制备与应用研究进展[J]. 材料导报, 2022, 36(Z1): 21090201-4.
[13] 朱咸勇, 丁振宇, 马国政, 朴钟宇, 付田力, 周雳, 于天阳, 郭伟玲, 王海斗. 三元MAX相层状陶瓷材料高温摩擦学性能研究进展[J]. 材料导报, 2022, 36(7): 21090166-11.
[14] 谢鸿翔, 项厚政, 马瑞奇, 陈雨雪, 刘国忠, 姚思远, 冒爱琴. 高熵陶瓷材料的研究进展[J]. 材料导报, 2022, 36(6): 20070201-8.
[15] 姚亿文, 杨飞跃, 赵爽, 陈国兵, 李昆锋, 杨自春. 新型陶瓷涂层的制备、结构调控及应用研究进展[J]. 材料导报, 2022, 36(23): 21010029-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed