Please wait a minute...
材料导报  2021, Vol. 35 Issue (11): 11208-11214    https://doi.org/10.11896/cldb.19100073
  高分子与聚合物基复合材料 |
UHMWPE人工髋关节的接枝改性进展
孙会娟*
衡水学院应用化学系,衡水 053000
Progress in Graft Modification of Ultra-high Molecular Weight Polyethylene Artificial Hip Joint
SUN Huijuan*
Department of Applied Chemistry, Hengshui University, Hengshui 053000, China
下载:  全 文 ( PDF ) ( 4866KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着人口老龄化与疾病年轻化趋势的发展,髋关节股骨头坏死、关节炎等病变的基数也在逐年增长,给患者的身体带来了疼痛,也会生活带来了诸多不便,而人工髋关节置换术的出现,为病变患者消除病痛、恢复关节正常活动及功能提供了有效途径。
目前常用的人工髋关节的摩擦副由超高分子量聚乙烯(UHMWPE)衬垫与金属股骨头两部分组成,其中,UHMWPE具有良好的力学性能、耐磨性、生物相容性等,但仍是人工关节最薄弱的环节,存在长期与金属接触摩擦产生磨损颗粒的现象,并会进一步引起骨溶解及无菌松动而导致炎症反应,为此,出现了UHMWPE的纳米材料填充改性与辐照交联改性,后者包括改性后的后处理工艺。以上方法通过利用纳米填料的特殊纳米结构及将UHMWPE的线性结构转变为三维体型结构,虽然在一定程度上改善了UHMWPE的耐磨性,但磨损颗粒并未消除,UHMWPE的生物相容性也未得到明显改善,且改性程度会因UHMWPE力学性能的下降而受限。基于此,UHMWPE的化学接枝改性技术得以应用。化学接枝改性可以在界面间形成化学键,提升基体的润滑、耐磨等性能,对基体的力学性能影响较小,并能获得与天然软骨相类似的结构,延长了人工髋关节的使用寿命。
本文首先介绍了UHMWPE的辐照、接枝改性及聚合物刷的水化润滑原理;其次详细介绍了2-甲基丙烯酰氧基乙基磷酰胆碱(MPC)、磺酸甜菜碱(SB)、聚乙烯醇水凝胶(PVA-H)和其他有机物对UHMWPE的接枝改性,及其在润滑、摩擦磨损、生物相容性等方面的效果,简单对比了UHMWPE、交联UHMWPE与接枝UHMWPE的临床结果,并展望今后人工髋关节可从衬垫、股骨头及临床应用等方向进行深入研究。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙会娟
关键词:  人工髋关节  接枝  水化润滑  摩擦  两性离子  水凝胶    
Abstract: With the aging of the population and the younger of the disease, the number of hip joint lesions, such as femoral head necrosis, arthritis, etc, has rised over the years, because of which the pain and inconvenience of the patients are increased. But an effective way for patients to eliminate pain, resume normal joint activity and function is provides by artificial hip replacement.
At present, the commonly used artificial hip joint is composed of liner made of Ultra?high molecular weight polyethylene(UHMWPE) and femoral head made of metal. UHMWPE has the advantages of good mechanical properties, wear resistance and biocompatibility, by contrary, UHMWPE is still the weakest component part in artificial joints, its wear particles are produced due to continuously contact friction with metals, which further leads to osteolysis and aseptic loosening, until inflammation.For this proble, UHMWPE is modified by filling nano?materials and irradiation crosslinking, and the post?treatment process is included. Although the wear resistance of UHMWPE is improved to a certain extent by the special structure of nano?filler and transformation from the linear UHMWPE to three?dimensional crosslinked network, the wear particles are not elimi?nated, the biocompatibility is not improved significantly, and the degree of modification is limited by the decline of mechanical properties. Subsequently, chemical grafting modification technology of UHMWPE is applied. By grafting, the lubrication, wear resistance of the matrix are improved, and the mechanical properties of matrix are affected faintly, the structure similar to natural cartilage is obtained, thus the service life of the artificial joint is prolonged.
In this paper, the principle of irradiation modification, grafting modification of UHMWPE and hydration lubrication of polymer brushes are introduced. Then, the grafting modification methods of 2?methacryloxyethyl phosphatidylcholine (MPC), sulfobetaine (SB), polyvinyl alcohol hydrogel (PVA?H) and other organic compounds on UHMWPE, and their effects on lubrication, friction and wear, biocompatibility are introduced in detail. The clinical results of UHMWPE, cross?linked UHMWPE and grafted UHMWPE are compared simply. Finally, the future research of hip pro?sthesis in the liner, femoral head and clinical application is expected.
Key words:  artificial hip joint    grafting    hydration lubrication    friction    zwitterionic    hydrogel
               出版日期:  2021-06-10      发布日期:  2021-06-25
ZTFLH:  TQ322.3  
基金资助: 河北省科技厅项目(18211235)
通讯作者:  *shj6910@163.com   
作者简介:  孙会娟,材料学硕士,工程师。全国专业标准化技术委员会委员(2014),两项国家标准主要起草人。现任衡水学院讲师,研究方向为高分子材料的加工与应用。主持2项企业合作项目,参与2项河北省科技厅项目,发表论文十余篇。
引用本文:    
孙会娟. UHMWPE人工髋关节的接枝改性进展[J]. 材料导报, 2021, 35(11): 11208-11214.
SUN Huijuan. Progress in Graft Modification of Ultra-high Molecular Weight Polyethylene Artificial Hip Joint. Materials Reports, 2021, 35(11): 11208-11214.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100073  或          http://www.mater-rep.com/CN/Y2021/V35/I11/11208
1 Zhang R M, Liu Z Q, Zhou Q X, et al. China Safety Science Journal,2018,28(8),75(in Chinese).
张睿明,柳忠起,周前祥,等.中国安全科学学报,2018,28(8),75.
2 Chen K, Yang X H, Zhang D K, et al. Wear,2017,376,329.
3 Newman J M, Khlopas A, Chughtai M, et al. The Journal of Hip Surgery,2017,1(1),14.
4 Kumar E G M, Kumar G M Y, Noorudheen M. International Journal of Research in Orthopaedics,2018,4(2),333.
5 Altay M, Demirkale i, ?atma M F, et al. Indian Journal of Orthopaedics,2018,52(4),374.
6 Lyman S, Lee Y Y, Franklin P D, et al. Clinical Orthopaedics and Rela?ted Research,2016,474(6),1472.
7 Le Manach Y, Collins G, Bhandari M, et al. Jama,2015,314(11),1159.
8 Rutherford M, Khan R J K, Fick D P, et al. International Orthopaedics,2019,43(4),71.
9 Oommen A T, Krishnamoorthy V P, Poonnoose P M, et al. Indian Journal of Orthopaedics,2015,49(2),181.
10 Ishihara K. Polymer Journal,2015,47(9),585.
11 Ai C C, Jiang J, Chen S Y. Fudan University Journal of Medical Sciences,2016,43(6),717(in Chinese).
艾承冲,蒋佳,陈世益.复旦学报(医学版),2016,43(6),717.
12 Gul R M, Fung K, Doshi B N, et al. Journal of Orthopaedic Research,2017,35(11),2551.
13 Heath D E, Cooper S L. Journal of Biomaterials Science, Polymer Edition,2017,28(10?12),1051.
14 Chukov D I, Stepashkin A A, Maksimkin A V, et al. Composites Part B: Engineering,2015,76,79.
15 Gu J W, Li N, Tian L D, et al. RSC Advances,2015,5(46),36334.
16 Wroblewski B M, Siney P D, Fleming P A. Charnley low?frictional torque arthroplasty of the hip, Springer, Cham Publishing, Switzerland,2016.
17 Wang H L, Xu L, Li R, et al. Applied Surface Science,2016,382,162.
18 Bian Y Y, Zhou L, Zhou G, et al. Journal of the Mechanical Behavior of Biomedical Materials,2018,82,87.
19 Niemczewska?Wójcik M. Measurement,2017,107,89.
20 Jalali?Vahid D, Jagatia M, Jin Z M, et al. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology,2001,215(4),363.
21 Li B Y, Li M J, Fan C, et al. Composites Science and Technology,2015,106,68.
22 Sakai N, Yarimitsu S, Sawae Y, et al. Biosurface and Biotribology,2019,5(1),13.
23 Porte E, Cann P, Masen M. Journal of the Mechanical Behavior of Biomedical Materials,2019,90,284.
24 Su D S, Perathoner S, Centi G. Chemical Reviews,2013,113(8),5782.
25 Chen W, Duan H T, Gu K L, et al. Polymer Materials Science & Engineering,2015,31(8),62(in Chinese).
陈雾,段海涛,顾卡丽,等.高分子材料科学与工程,2015,31(8),62.
26 Luo Y L, Zhao Z X. Polymer Bulletin,1999(4),88(in Chinese).
罗延龄,赵振兴.高分子通报,1999(4),88.
27 Tamboli S M, Mhaske S T, Kale D D. Indian Journal of Chemical Technology,2004,11,853.
28 Sirimamilla A, Rimnac C M. Journal of the Mechanical Behavior of Biomedical Materials,2019,91,366.
29 Ansari F, Ries M D, Pruitt L. Journal of the Mechanical Behavior of Biomedical Materials,2016,53,329.
30 Kurtz S M. UHMWPE biomaterials handbook, William Andrew Publi?shing, USA,2016.
31 Medel F J, Pena P, Cego?ino J, et al. Journal of Biomedical Materials Research Part B,2007,83(2),380.
32 Gul R M, Fung K, Doshi B N, et al. Journal of Orthopaedic Research,2017,35(11),2551.
33 Bellare A, Dorfman R, Samuel A, et al. Journal of the Mechanical Behavior of Biomedical Materials,2016,61,493.
34 Oral E, Neils A L, Doshi B N, et al. Journal of Biomedical Materials Research Part B: Applied Biomaterials,2016,104(2),316.
35 Wang H L, Xu L, Hu J T, et al. Radiation Physics and Chemistry,2015,115,88.
36 Moro T, Kawaguchi H, Ishihara K, et al. Biomaterials,2009,30(16),2995.
37 Ma S, Zhang X Q, Yu B, et al. NPG Asia Materials,2019,11(1),24.
38 Kyomoto M, Moro T, Konno T, et al. Journal of Materials Science: Materials in Medicine,2007,18(9),1809.
39 Ishikawa Y, Hiratsuka K I, Sasada T. Wear,2006,261(5),500.
40 Briscoe W H, Titmuss S, Tiberg F, et al. Nature,2006,444(7116),191.
41 Xiong D S, Deng Y L, Wang N, et al. Applied Surface Science,2014,298,56.
42 Tanaka M, Iwasaki Y. Acta Biomaterialia,2016,40,54.
43 Chantasirichot S, Inoue Y, Ishihara K. Polymer,2015,61,55.
44 Lewis A L, Stratford P W. Journal of Long?Term Effects of Medical Implants,2017,27(2?4),233.
45 Wang W, Lee C, Pastuszka M, et al. Pharmaceutics,2019,11(5),221.
46 Sasso E D, Bagno A, Scuri S T G, et al. Annual Review of Biomedical Engineering,2019,21,85.
47 Azuma T, Ohmori R, Teramur A Y, et al. Colloids and Surfaces B: Biointerfaces,2017,159,655.
48 Zhao J, Chai Y D, Zhang J, et al. Acta Biomaterialia,2015,16,94.
49 Xie G Y, Ma C P, Zhang X Q, et al. Colloids and Surfaces B: Biointerfaces,2017,157,166.
50 Ishihara K. Journal of Biomedical Materials Research Part A,2019,107(5),933.
51 Bito K, Hasebe T, Maegawa S, et al. Acta Biomaterialia,2019,87,187.
52 Tang B Z, Abd?El?Aziz A S, Craig S, et al. Phosphorus?Based Polymers: From Synthesis to Applications, Royal Society of Chemistry Publishing, UK,2014.
53 Kyomoto M, Moro T, Yamane S, et al. Journal of Biomedical Materials Research Part A,2014,102(9),3012.
54 Moro T, Takatori Y, Kyomoto M, et al. Journal of Orthopaedic Research,2014,32(3),369.
55 Moro T, Takatori Y, Ishihara K, et al. Nature Materials,2004,3(11),829.
56 Takatori Y, Moro T, Kamogawa M, et al. Journal of Artificial Organs,2013,16(2),170.
57 Kyomoto M, Moro T, Yamane S, et al. Biomaterials,2014,35(25),6677.
58 Kyomoto M, Moro T, Yamane S, et al. Biomaterials,2017,112,122.
59 Kyomoto M, Moro T, Yamane S, et al. Journal of the Mechanical Beha?vior of Biomedical Materials,2018,79,203.
60 Yarimitsu S, Moro T, Kyomoto M, et al. Proceedings of the Institution of Mechanical Engineers,Part H: Journal of Engineering in Medicine,2015,229(7),506.
61 Moro T, Takatori Y, Tanaka S, et al. Journal of Orthopaedic Research,2017,35(9),2007.
62 Kurtz S M, Gawel H A, Patel J D. Clinical Orthopaedics and Related Research??,2011,469(8),2262.
63 Ye T T, Deng Q Y, Ma D L, et al. International Journal of Modern Phy?sics B,2019,33(1?3),1940056.
64 Sawano H, Warisawa S, Ishihara S. Wear,2010,268(1?2),233.
65 Zou H B, Chen N N, Shi M X, et al. Applied Microbiology and Biotechnology,2016,100(9),3865.
66 Wei X Z, Kong X, Wang S X, et al. Journal of Functional Materials,2014,45(2),2007(in Chinese).
魏秀珍,孔新,王松雪,等.功能材料,2014,45(2),2007.
67 Gallardo A, Martínez?Campos E, García C, et al. Biomacromolecules,2017,18(5),1521.
68 Li Z S, Li J F, Liu H, et al. Chemical Industry and Engineering Progress,2018,37(12),4719(in Chinese).
李兆双,李建芳,刘鹤,等.化工进展,2018,37(12),4719.
69 Laschewsky A. Polymers,2014,6(5),1544.
70 Yan S P, Zhang C, Lyu H. Journal of Functional Polymers,2019,32(4),1(in Chinese).
闫树鹏,张冲,吕华.功能高分子学报,2019,32(4),1.
71 Kwon H J, Lee Y, Seon G M, et al. Acta Biomaterialia,2017,61,169.
72 Iqbal Z, Kim S, Moyer J, et al. Journal of Biomaterials Applications,2019,34(2),297.
73 Li Q, Imbrogno J, Belfort G, et al. Journal of Applied Polymer Science,2015,132(21),41781.
74 Tanaka M, Ogawa Y, Hirata Y, et al. Sensors and Materials,2019,31(1),33.
75 Deng Y L, Xiong D S, Wang K. Journal of Materials Science: Materials in Medicine,2013,24(9),2085.
76 Mu R H, Lai X J, Wang L, et al. Chemical Industry and Engineering Progress,2019,38(7),3377(in Chinese).
穆瑞花,赖小娟,王磊,等.化工进展,2019,38(7),3377.
77 Deng Y L, Xiong D S, Shao S L. Materials Science and Engineering: C,2013,33(3),1339.
78 Deng Y L, Xiong D S, Wang K. Journal of the Mechanical Behavior of Biomedical Materials,2014,35,18.
79 Lim C M, Hur J, Jang H, et al. Acta Biomaterialia,2019,85,180.
80 Lim C M, Seo J, Jang H, et al. Applied Surface Science,2018,452,102.
81 Park H H, Ko S C, Oh G W, et al. Carbohydrate Polymers,2018,198,197.
82 Gong G S, Liu J B, Zhong Y P, et al. Chemical Industry and Engineering Progress,2016,35(8),2507(in Chinese).
龚桂胜,刘景勃,钟玉鹏,等.化工进展,2016,35(8),2507.
83 Chen K, Zhang D K, Cui X T, et al. RSC Advances,2015,5(31),24215.
84 Chen K, Zhang D K, Yang X H, et al. Soft Materials,2016,14(4),244.
85 Xia B, Xie M J, Yang B C. Journal of Biomedical Materials Research Part A,2013,101(1),54.
86 Xie M J, Yu Z L, Yang B C. Chemical Research and Application,2016,28(5),644(in Chinese).
谢美菊,余自力,杨帮成.化学研究与应用,2016,28(5),644.
87 Aziz G, De Geyter N, Declercq H, et al. Surface and Coatings Techno?logy,2015,271,39.
88 Deng Y L, Xiong D S. Journal of Polymer Research,2015,22(10),195.
[1] 曾金成, 宋波, 左敦稳, 邓永芳. 外加辅助条件搅拌摩擦焊技术研究进展[J]. 材料导报, 2021, 35(7): 7162-7168.
[2] 刘敬福, 齐莉, 李广龙, 曲迎东. 真空搅拌TiCp/7075复合材料的组织、力学与耐磨性能[J]. 材料导报, 2021, 35(6): 6114-6119.
[3] 吴礼宁, 夏延秋, 吴浩, 陈中山, 曹亚楠, 侯冲. 纳米碳管/石墨烯导电硅脂的性能[J]. 材料导报, 2021, 35(6): 6189-6193.
[4] 王旭, 牛宗伟, 王晓明, 赵阳, 韩国峰, 常青, 付华, 滕涛, 赵菲菲. 外场(力)辅助射流电沉积研究现状[J]. 材料导报, 2021, 35(5): 5107-5121.
[5] 罗涛, 马爱洁, 白海燕, 程勇博, 周宏伟. 磁诱导高取向水凝胶的构筑及功能[J]. 材料导报, 2021, 35(5): 5206-5213.
[6] 刘敬萱, 沈健, 李锡武, 闫丽珍, 闫宏伟, 刘宏伟, 温凯, 李亚楠. 6005A-T5铝合金搅拌摩擦焊接头组织与疲劳性能[J]. 材料导报, 2021, 35(2): 2092-2097.
[7] 杨文涛, 何鹏飞, 刘明, 周永欣, 王海斗, 马国政, 白宇. 快速凝固过共晶铝硅合金的显微组织及摩擦学行为研究现状[J]. 材料导报, 2021, 35(11): 11126-11136.
[8] 崔功军, 师睿博, 李赛, 刘慧强, 寇子明. AZ80A、ZK60A和ME20M镁合金干摩擦学性能研究[J]. 材料导报, 2021, 35(10): 10103-10108.
[9] 常川川, 李菊, 张田仓, 郭德伦. 焊后热处理对高氧TC4/TC17钛合金线性摩擦焊接头组织及性能的影响[J]. 材料导报, 2021, 35(10): 10109-10113.
[10] 王毓, 任俊鹏, 赵君, 周进康, 李小平. 磁性壳聚糖半互穿热膨胀水凝胶的制备及对Cr(Ⅵ)的吸附性能[J]. 材料导报, 2021, 35(10): 10205-10210.
[11] 刘云帆, 秦红玲, 韩翠红, 石佳东, 马国政, 王海斗. 自润滑关节轴承寿命试验及损伤失效机理研究现状[J]. 材料导报, 2021, 35(1): 1036-1045.
[12] 李锐, 曾令碧, 刘腾, 王晓杰, 杨平安. 不同温度下纯Ni/NiTi合金的摩擦特性研究[J]. 材料导报, 2020, 34(Z1): 297-303.
[13] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[14] 张洋, 张海燕, 陈蕴博, 王大鹏, 陈林, 刘晓萍. 热处理对热压制备Al-Cu-Mg/SiCp制动耐磨复合材料组织及磨损性能的影响[J]. 材料导报, 2020, 34(Z1): 356-360.
[15] 李亚林, 孙垒, 曹柳絮, 焦孟旺, 罗伟, 邱振宇, 王畅. 汽车制动盘用铝基复合材料摩擦磨损研究进展[J]. 材料导报, 2020, 34(Z1): 361-365.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed