Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (10): 1672-1677    https://doi.org/10.11896/j.issn.1005-023X.2018.10.020
  材料研究 |
TMC-300对PLLA/PPC合金性能的影响
齐亚平1,罗发亮1,王克智2,沈志远1,武学坚1,王迪然1
1 宁夏大学省部共建煤炭高效利用与绿色化工国家重点实验室,银川 750021;
2 山西化工研究所,太原 030021
Effect of TMC-300 on the Performance of PLLA/PPC Alloy
QI Yaping1, LUO Faliang1, WANG Kezhi2, SHEN Zhiyuan1, WU Xuejian1, WANG Diran1
1 State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan 750021;
2 Shanxi Provincial Institute of Chemical Industry, Taiyuan 030021
下载:  全 文 ( PDF ) ( 4929KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了改善聚L-乳酸(PLLA)/聚碳酸亚丙酯(PPC)合金的结晶等性能,利用熔融共混法在合金中添加PLLA专用酰肼类成核剂TMC-300。采用差示扫描量热仪(DSC)、广角X射线衍射仪(WAXD)、小角X射线散射仪(SAXS)、偏光显微镜(POM)、扫描电子显微镜(SEM)及力学分析方法考察了PLLA专用酰肼类成核剂TMC-300对PLLA/PPC合金的结晶及力学性能的影响。结果显示,添加质量分数为0.5%的TMC-300对PLLA/PPC合金之间的相容性影响甚微,但可提高PLLA/PPC合金的结晶度,使合金中PLLA的长周期减小,且添加TMC-300的合金中PLLA晶核数目增多,球晶尺寸减小。此外,添加0.5%的TMC-300可提高PLLA/PPC合金整体的断裂伸长率。在质量比为80/20的PLLA/PPC合金中加入0.5%的TMC-300后,该三元共混材料的冲击韧性达到最佳。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
齐亚平
罗发亮
王克智
沈志远
武学坚
王迪然
关键词:  聚L-乳酸  聚碳酸亚丙酯  TMC-300  结晶性能  力学性能    
Abstract: In order to improve the crystallization properties of poly (L-lactic acid) (PLLA)/poly (propylene carbonate) (PPC) alloy, a PLLA-specific hydrazide nucleating agent TMC-300 was added into the alloy by melt blending. Differential scanning calori-meter (DSC), wide angle X-ray diffraction (WAXD), small angle X-ray scattering (SAXS), polarized optical microscopy (POM), scanning electron microscopy (SEM) and mechanical analysis were utilized to investigate the effects of TMC-300 on the properties of PLLA/PPC alloy. The results manifested that the addition of 0.5% TMC-300 had little effect on the compatibility between PLLA/PPC alloys, but the crystallinity of PLLA/PPC alloy increased, and the long period of PLLA in the alloy decreased. The number of PLLA nuclei in the alloy increased after adding in TMC-300, which the size of the spherulite decreased. In addition, the elongation at break of the PLLA/PPC alloy was increased with added 0.5% of TMC-300. The impact toughness of the alloy improved and its ma-ximal value corresponded to PLLA/PPC alloy of 80/20 mass ratio with addition of 0.5% TMC-300.
Key words:  poly(L-lactic acid)    poly(propylene carbonate)    TMC-300    crystallization properties    mechanical properties
               出版日期:  2018-05-25      发布日期:  2018-07-06
ZTFLH:  O631  
基金资助: 国家自然科学基金(51063004);宁夏回族自治区化学工程与技术国内一流学科资助(NXYLXK2017A04)
通讯作者:  罗发亮:通信作者,男,1976年生,博士,教授,硕士研究生导师,主要从事高分子材料结构、性能及改性研究 E-mail:flluo@iccas.ac.cn   
作者简介:  齐亚平:女,1992年生,硕士研究生,主要研究方向为高分子材料改性 E-mail:820966382@qq.com
引用本文:    
齐亚平,罗发亮,王克智,沈志远,武学坚,王迪然. TMC-300对PLLA/PPC合金性能的影响[J]. 《材料导报》期刊社, 2018, 32(10): 1672-1677.
QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy. Materials Reports, 2018, 32(10): 1672-1677.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.10.020  或          http://www.mater-rep.com/CN/Y2018/V32/I10/1672
1 Frackowiak S, Ludwiczak J, Leluk K, et al. Foamed poly(lactic acid) composites with carbonaceous fillers for electromagnetic shielding[J]. Materials & Design,2015,65:749.
2 Fonseca C, Ochoa A, Ulloa M T, et al. Poly(lactic acid)/TiO2, nanocomposites as alternative biocidal and antifungal materials[J]. Materials Science & Engineering C,2015,57:314.
3 Saeidlou S, Huneault M A, Li H, et al. Poly(lactic acid) crystallization[J]. Progress in Polymer Science,2012,37(12):1657.
4 Fan Y, Zhu J, Yan S, et al. Nucleating effect and crystal morphology controlling based on binary phase behavior between organic nuc-leating agent and poly(L-lactic acid)[J]. Polymer,2015,67:63.
5 Monticelli O, Calabrese M, Gardella L, et al. Silsesquioxanes: Novel compatibilizing agents for tuning the microstructure and properties of PLA/PCL immiscible blends[J]. European Polymer Journal,2014,58(9):69.
6 Song P, Chen G, Wei Z, et al. Rapid crystallization of poly(L-lactic acid) induced by a nanoscaled zinc citrate complex as nucleating agent[J]. Polymer,2012,53(19):4300.
7 Chen Weifeng. Research progress in completely biodegradable PPC blends[J]. Plastics Science and Technology,2015,275(43):68(in Chinese).
陈卫丰.完全生物降解PPC共混复合材料的研究进展[J].塑料科技,2015,275(43):68.
8 Fu Luxiang, Tan Jingzhuo, Qin Hang, et al. Structure and property of fully biodegradable PLA/PPC alloy[J]. China Plastics Industry,2006(11):14(in Chinese).
富露祥,谭敬琢,秦航,等.完全生物降解塑料PLA/PPC合金的结构与性能研究[J].塑料工业,2006(11):14.
9 Bai H, Yong Z, Zhang Y, et al. Crystallization kinetics of toughed poly(butylene terephthalate)/polycarbonate blends[J]. Journal of Applied Polymer Science,2006,101(3):1295.
10 Yasuniwa M, Tsubakihara S, Sugimoto Y, et al. Thermal analysis of the double-melting behavior of poly(L-lactic acid)[J]. Journal of Polymer Science Part B Polymer Physics,2004,42(1):25.
11 Lorenzo M L D. Calorimetric analysis of the multiple melting beha-vior of poly(L-lactic acid)[J]. Journal of Applied Polymer Science,2010,100(4):3145.
12 He Yong. Different molecular weight and structure of polylactic acid homopolymer configuration condensed with the solid copolymer, thermodynamics and kinetics of crystallization[D]. Shanghai: Fudan University,2008(in Chinese).
何勇.不同分子量与构型结构的聚乳酸均聚物与立体共聚物的凝聚态、热力学及结晶动力学研究[D].上海:复旦大学,2008.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[9] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[10] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[11] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[12] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[13] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[14] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[15] 高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed