Please wait a minute...
材料导报  2020, Vol. 34 Issue (2): 2153-2158    https://doi.org/10.11896/cldb.18110123
  高分子与聚合物基复合材料 |
基于三点弯曲试验的聚丙烯纤维桥接应力研究
梁宁慧1,2, 曹郭俊1,2, 刘新荣1,2, 代继飞3, 缪庆旭1,2
1 重庆大学土木工程学院,重庆 400045
2 库区环境地质灾害防治国家地方联合工程研究中心(重庆大学),重庆 400045
3 中国建设基础设施有限公司,北京 100044
Study on Bridging Stress of Polypropylene Fiber Based on Three-point Bending Test
LIANG Ninghui1,2, CAO Guojun1,2, LIU Xinrong1,2, DAI Jifei3,MIAO Qingxu1,2
1 College of Civil Engineering,Chongqing University,Chongqing 400045,China
2 National Joint Engineering Research Center for Prevention and Control of Environmental Geological Hazards in the TGR Area(Chongqing University),Chongqing 400045,China
3 China Construction Infrastructure Limited Company,Beijing 100044,China
下载:  全 文 ( PDF ) ( 3261KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 为研究聚丙烯(Polypropylene, PP)纤维在混凝土开裂过程中桥接应力的变化规律,选用两种尺寸的聚丙烯细纤维和一种尺寸的聚丙烯粗纤维制备纤维增强混凝土试件,在试件上进行单边缺口梁三点弯曲试验,获得各组试件的荷载-裂缝切口位移曲线和荷载-位移曲线。基于试验结果,采用合成纤维细观拉拔模型,拟合PP纤维桥接应力曲线,并与实测纤维桥接应力曲线作对比,确定对应的PP纤维模型参数。研究结果表明:聚丙烯细纤维的桥接应力峰值为0.20~0.22 MPa,聚丙烯粗纤维的桥接应力峰值为0.56 MPa,纤维桥接应力随裂缝宽度增加呈现先增大后减小的趋势;通过细观拉拔模型中的参数P0k0k1,计算PP纤维在混凝土基体中的桥接应力;粗纤维具有较强的桥接应力,在混凝土开裂后表现尤为突出,能有效抑制宏观裂缝的扩展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁宁慧
曹郭俊
刘新荣
代继飞
缪庆旭
关键词:  聚丙烯纤维  三点弯曲试验  细观模型  桥接应力    
Abstract: In order to study the variation rule of bridging stress in the fracture process of polypropylene (PP) fiber reinforced concrete, we selected two types of fine PP fiber and one type of coarse PP fiber to prepare fiber reinforced concrete specimens, then carried out three-point bending test of single side notched beam on the specimens, further obtained the load-deformation curve and load-crack mouth opening displacement curve of each specimen. Based on the experimental results, the meso-model for synthetic fibers was employed to fit the bridging stress curve of PP fibers, and the corresponding parameters of PP fibers were determined according to the comparison of the bridging stress curve between the simulated result and the experimental one. The results revealed that the peak bridging stress of fine PP fiber was 0.20—0.22 MPa, and coarse PP fiber exhibited a peak bridging stress of 0.56 MPa. As the crack width growing, the bridging stress of PP fiber presented a variation trend of first increase and then decrease. By determining the parameters of P0, k0 and k1 in the meso-model for fiber pullout, the bridging stress of PP fiber in concrete matrix was calculated. The coarse PP fiber showed strong bridging stress, especially after the cracking of concrete, which could effectively restrain the expansion of macroscopic cracks.
Key words:  polypropylene fiber    three-point bending test    meso-model    bridging stress
               出版日期:  2020-01-25      发布日期:  2020-01-03
ZTFLH:  TU528  
基金资助: 重庆市研究生科研创新项目 (CYS18026;CYS17040);国家自然科学基金(41372356)
通讯作者:  liangninghui0705@163.com   
引用本文:    
梁宁慧, 曹郭俊, 刘新荣, 代继飞, 缪庆旭. 基于三点弯曲试验的聚丙烯纤维桥接应力研究[J]. 材料导报, 2020, 34(2): 2153-2158.
LIANG Ninghui, CAO Guojun, LIU Xinrong, DAI Jifei, MIAO Qingxu. Study on Bridging Stress of Polypropylene Fiber Based on Three-point Bending Test. Materials Reports, 2020, 34(2): 2153-2158.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18110123  或          http://www.mater-rep.com/CN/Y2020/V34/I2/2153
1 Chen J P. Meso-level numerical study on flexural properties of fiber reinforced concrete with different incorporation rate. Master’s Thesis, Guangzhou University, China,2010(in Chinese).陈江平. 不同掺量纤维增强混凝土受弯性能细观数值研究. 硕士学位论文, 广州大学, 2010.2 Zhang Q S. Sichuan Cement, 2018(7),329(in Chinese).张青松. 四川水泥, 2018(7),329.3 Li Y, Liu Z J, Liang X W. Engineering Mechanics, 2013, 30(1), 322(in Chinese).李艳, 刘泽军, 梁兴文. 工程力学, 2013, 30(1), 322.4 Du M G, Li Q B. Journal of Hydroelectric Engineering, 2005, 24(4), 21(in Chinese).杜明干, 李庆斌. 水利发电学报, 2005,24(4),21.5 Dai J G, Ueda T, Hasan M, et al. Proceedings of the Japan Concrete Institute, 2003,25 (1),1577.6 Doo-Yeol Yoo, Su-Tea Kang, Young-Soo Yoon. Construction and Buil-ding Materials, 2014,64,67.7 Pan Z F, Wang W, Meng S P, et al. Journal of Tongji University (Natural Science), 2015, 43(1), 33(in Chinese).潘钻峰, 汪卫, 孟少平, 等. 同济大学学报(自然科学版), 2015,43(1),33.8 Luo H L, Yang D Y, Zhou X Y, et al. Acta Materiae Compositae Sinica, 2019(8),1935(in Chinese).罗洪林,杨鼎宜,周兴宇, 等. 复合材料学报, 2019(8),1935.
[1] 靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
[2] 梁宁慧,杨鹏,刘新荣,钟杨,郭哲奇. 高应变率下多尺寸聚丙烯纤维混凝土动态压缩力学性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 288-294.
[3] 牛建刚, 刘江森, 王佳雷. 聚丙烯粗纤维轻骨料混凝土梁的二次峰值荷载曲线[J]. 《材料导报》期刊社, 2018, 32(14): 2407-2411.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed