Please wait a minute...
材料导报  2022, Vol. 36 Issue (5): 20060056-11    https://doi.org/10.11896/cldb.20060056
  金属与金属基复合材料 |
大线能量焊接用钢粗晶热影响区针状铁素体形成过程控制技术的研究进展
杨宇龙1, 贾潇2, 朱伏先2, 王平1
1 东北大学材料电磁过程研究教育部重点实验室,沈阳 110819
2 东北大学轧制技术及连轧自动化国家重点实验室,沈阳 110819
Research Progeress on Control Technology of Acicular Ferrite in CGHAZ for Large Heat-input Welding Steels
YANG Yulong1, JIA Xiao2, ZHU Fuxian2, WANG Ping1
1 Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
2 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
下载:  全 文 ( PDF ) ( 7658KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 大线能量焊接用钢被广泛应用于船舶制造、海洋工程、桥梁制造、原油储罐等领域。宽厚板的大线能量焊接技术能有效节约成本,提高生产效率,是目前焊接领域备受关注的研究方向。而焊接接头附近是焊后力学性能最为薄弱的位置,焊接热影响区(HAZ)尤其是粗晶焊接热影响区(CGHAZ)的力学性能是焊接评价的重要指标之一,因此对CGHAZ组织性能的控制是该领域重要的研究方向。针状铁素体组织是基于氧化物冶金工艺的大线能量焊接用高强钢焊后CGHAZ内的主要微观组织。针状铁素体组织的交错互锁结构有效保证了CGHAZ的韧性。如何有效控制针状铁素体的形成是大线能量焊接用钢研发的关键。
针状铁素体的形成机理尚未统一,影响因素错综复杂。针状铁素体的形核过程可能由多种形核机制综合控制。而针状铁素体形核的主要影响因素与钢中夹杂物的特性有直接关系。通过改善钢中夹杂物的尺寸、形貌和分布,可以提高针状铁素体的形核效率。针状铁素体的互锁组织有效地保证了CGHAZ的韧性。针状铁素体形成过程的有效控制技术不仅是CGHAZ韧性不断提高的关键,也是开发高强度易焊板产品的关键因素。此外,它与免预热焊接材料的开发密切相关,成为该领域的主要研究方向。
因此,本文通过总结相关领域诸多参考文献的关键信息,梳理了大线能量焊接用钢CGHAZ针状铁素体形成过程控制技术的发展历程,探讨了CGHAZ针状铁素体的形核机理及影响因素,并列举了相关领域的主要研究成果,为大线能量焊接用钢的技术研究和产品开发提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨宇龙
贾潇
朱伏先
王平
关键词:  针状铁素体  夹杂物  形核  粗晶焊接热影响区(CGHAZ)  大线能量焊接    
Abstract: Large heat-input welding steel is widely used in shipbuilding, ocean engineering, bridge manufacturing, crude oil storage tanks and other fields. Large heat-input welding technology of thick plates effectively saves costs and improves production efficiency, which is a key research direction that attracts much attention in the welding field at present. The welding joint is the weakest link and the performance of HAZ, especially CGHAZ, is one of the important indexes to evaluate the welding performance. Therefore, the control of CGHAZ miscrostructure and performance is an important research direction in this field. Acicular ferrite is the main microstructure in the coarse grain heat affected zone (CGHAZ) of large heat-input welding steels based on oxide metallurgy process. The interlocking microstructure of acicular ferrite effectively ensures the toughness of CGHAZ. How to effectively control the formation of acicular ferrite is the key to the development of steels for large heat-input welding.
The formation mechanism of acicular ferrite has not been unified and the influencing factors are complex. The formation mechanism of acicular ferrite is different and the combination of multiple nucleation mechanisms is possible. The main influence factors of the formation of acicular ferrite are directly related to the characteristics of inclusions in steels. By improving the size, morphologies and distribution of inclusions in steels, the nucleation rate of acicular ferrite could be improved. The interlock microstructure of acicular ferrite effectively guarantees the toughness of CGHAZ. The effective control technology of acicular ferrite formation process is not only the key to the continuous improvement of toughness in CGHAZ, but also the critical factors of the development of high-strength easily welded plate products. In additon, it is closely related to the deve-lopment of non-preheating supporting welding materials, which becomes the main research direction in this fields.
Based on the key information of many references in this related fields, the development process of acicular ferrite control technology in CGHAZ for large heat-input welding is summarized in this paper, the nucleation mechanism and influence factors of acicular ferrite in CGHAZ are discussed and the main research results in related fields are listed. This paper provides useful reference data for technical research and product development of large heat-input welding steels.
Key words:  acicular ferrite    inclusion    nucleation    coarse grain heat affected zone (CGHAZ)    large heat-input welding
出版日期:  2022-03-10      发布日期:  2022-03-08
ZTFLH:  TF01  
基金资助: 辽宁省科学技术计划项目( 2019JH1/10100014);中央高校基本科研专项资金资助项目(N2007009)
通讯作者:  wang20211107@126.com   
作者简介:  杨宇龙,就读于东北大学材料科学与工程专业,博士研究生,主要研究方向为大线能量焊接用钢组织性能调控及易焊接机理研究等,曾参与辽宁省科学技术重大专项课题及中央高校基本科研项目等。
王平,东北大学教授,博士研究生导师,先后承担国家“863”目标导向项目、国家自然科学基金项目、省部级基金项目等科研项目40余项。主编出版国家统编教材《金属塑性成形力学》,近年发表文章60余篇。国家科技奖励评审专家;湖北省科技奖评审专家;中国复合材料学会会员;辽宁省金属学会会员;中国博士后科学基金评审专家;山东省科技奖评审专家。
引用本文:    
杨宇龙, 贾潇, 朱伏先, 王平. 大线能量焊接用钢粗晶热影响区针状铁素体形成过程控制技术的研究进展[J]. 材料导报, 2022, 36(5): 20060056-11.
YANG Yulong, JIA Xiao, ZHU Fuxian, WANG Ping. Research Progeress on Control Technology of Acicular Ferrite in CGHAZ for Large Heat-input Welding Steels. Materials Reports, 2022, 36(5): 20060056-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060056  或          http://www.mater-rep.com/CN/Y2022/V36/I5/20060056
1 Sun L G, Liu Y S, Hao J Q, et al. Iron and Steel, 2019, 54(6), 66(in Chinese).
孙立根, 刘云松, 郝剑桥, 等. 钢铁, 2019, 54(6), 66.
2 Shi M H, Zhang P Y, Liu J Y, et al. Materials Science and Technology, 2013, 21(3), 3(in Chinese).
石明浩,张朋彦,刘纪源,等. 材料科学与工艺, 2013, 21(3), 3.
3 Shu W, Wang X M, Li S R, et al. Acta Metallurgica Sinica,2011, 47(4), 439(in Chinese).
舒伟,王学敏,李书瑞,等. 金属学报, 2011, 47(4), 439.
4 Mizoguchi S, Takamura J. In: Sixth International Iron and Steel Congress. Nagoya, 1990, pp. 2339.
5 Kanazawa S, Nakashima A, Okamoto K, et al. Tetsu-to-Hagane, 1975, 61(11), 2560.
6 Suzuki S, Oi K, Ichimiya K, et al. Bulletin of the Japan Institute of Metals, 2004, 43(3), 232.
7 Yamamoto K, Matsuda S, Haze T. ASTM International,1989,1042,275.
8 Shim J H, Cho Y W, Chung S H, et al. Acta Materialia, 1999, 47(9), 2756.
9 Kim H S, Chang C H, Lee H G. Scripta Materialia, 2005, 53, 1255.
10 Chang C, Jung I, Park S, et al. Ironmaking and Steelmaking, 2005, 32(3), 251.
11 Uemori R, Inoue T, Ichikawa K. Nippon Steel Technical Report, 2012, 101, 41.
12 Moon J, Lee C, Uhm S,et al. Acta Materialia, 2006, 54(4), 1058.
13 Lou H N, Wang C, Wang B X, et al. ISIJ International, 2019, 59(2), 316.
14 Hu X P, Wen D H, Li Z G. Material and Heat Treatment, 2008, 37(22), 98(in Chinese).
胡晓萍, 温东辉, 李自刚. 材料热处理技术, 2008, 37(22), 98.
15 Huang W, Gao Z F, Zhang Z Q. Progress in Steel Building Structures, 2015, 17(1), 4(in Chinese).
黄维,高真凤,张志勤. 建筑钢结构进展, 2015, 17(1), 4.
16 Liao J G. World Metals, 2018, 3 (B16), 1(in Chinese).
廖建国. 世界金属导报, 2018, 3 (B16), 1.
17 Qiu H, Mori H, Enoki M, et al. Materials Science and Engineering A, 2001, 316, 220.
18 Chen X, Liu J X, Dong H X, et al. The Chinese Journal of Nonferrous Metals, 2004, 14(1), 228(in Chinese).
陈晓, 刘继雄, 董汉雄,等. 中国有色金属学报, 2004, 14(1), 228.
19 Guo T. Wide and Heavy Plate, 2005, 11(3), 45(in Chinese).
郭桐. 宽厚板, 2005, 11(3), 45.
20 Yang F C, Chai F, Su H. Shanghai Metals,2010,32(1),7(in Chinese).
杨才福,柴峰,苏航. 上海金属, 2010, 32(1), 7.
21 Zhao J. Materials Reports A: Review Papers, 2018, 32(1),4(in Chinese).
赵捷. 材料导报:综述篇, 2018, 32(1),4.
22 Fu K J, Ji Y H, Wang J J, et al. Angang Technology, 2011, 6(372), 10(in Chinese).
付魁军,及玉梅,王佳骥,等. 鞍钢技术, 2011, 6(372), 10.
23 Ju J B. Electric Welding Machine, 2010, 40(2), 96(in Chinese).
鞠建斌. 电焊机, 2010, 40(2), 96.
24 Yang Y Q, Tan X B, Yu Q, et al. Pressure Vessel Technology, 2012, 29(9), 64(in Chinese).
杨云清,谭小斌,于青, 等. 压力容器, 2012, 29(9), 64.
25 Devillers L, Kaplan D, Marandet B, et al. In:Process Conference of Effects of Residual, Impurity, and Micro alloying Elements in Weldability and Weld properties, London 1983, pp. 1.
26 Barritte G S, Edmonds D V, In:Conference Record of Advances in the Physical Metallurgy and Applications of Steel, London, 1982, pp. 132.
27 Abson D J. Welding World, 1989, 27, 96.
28 Enomoto M. Metals and Materials, 1998, 4(2), 120.
29 Goldsmith A, Waterman T E. Handbook of thermophysical properties of solid materials. The Macmillan Company, New York, 1961, pp.280.
30 Liu S, Olson D L. Welding Journal, 1986, 65, 145.
31 Ishikawa F, Takahashi T, Ochi T. Mrtallurgical and Materials Transactions A, 1994, 25, 930.
32 Shim J H, Oh Y J, Suh J Y, et al. Acta Materialia, 2001, 49, 2118.
33 Tomita Y, Saito N, Tsuzuki T, et al. ISIJ International, 1994, 34(10), 833.
34 Madariaga I, Gutiérrez I. Acta Materialia, 1998, 47(3), 958.
35 Lee J L, Pan Y T. ISIJ International, 1995, 35(8), 1030.
36 Gao J Z,Fu P X,Liu H W, et al. Metals, 2015, 5(1), 392.
37 Chen X, Li Y X. Materials Science and Engineering A, 2007, 444(1-2), 302.
38 Wang B X, Liu X H, Wang G D. Steel Research International, 2018, 89(2), 9.
39 Gregg J M, Bhadeshia H K D H. Metallurgical and Materials Transactions A, 1994, 25A, 1603.
40 Zhang Z, Farrar R A. Materials Science and Technology, 1999, 12, 258.
41 Garcia de Andres C, Capdevila C, Madariaga I, et al. Scripta Materialia, 2001, 45, 714.
42 Byun J S, Shim J H, Cho Y W, et al. Acta Materialia, 2003, 51, 1601.
43 Wan X L, Wu K M, Nune K C, et al. Science and Technology of Welding and Joining, 2015, 20(3), 261.
44 Zhang D, Terasaki H, Komizo Y I. Acta Materialia, 2010, 58(4), 1374.
45 Wang C, Wang X, Kang J, et al. Metals, 2019, 9(3), 66.
46 Kang Y J, Jeong S H, Kang J H, et al. Metallurgical and Materials Transactions A, 2016, 47(6), 2852.
47 Jiang Z H, Wang P, Li D Z, et al. Materials Science and Engineering A, 2019, 742, 550.
48 Taniguchi T, Satoh N, Satio Y, et al. ISIJ International, 2011, 51(12), 1964.
49 Gong P, Palmiere E J, Rainforth W M. Acta Materialia, 2016, 119, 52.
50 Li C, Dong Y L, Kong W M, et al. Iron and Steel, 2019, 52(2), 38(in Chinese).
李超,董廷亮,孔维明,等. 钢铁, 2019, 52(2), 38.
51 Xiong Z H, Liu S L, Wang X M, et al. Materials Science and Enginee-ring A, 2015, 636, 121.
52 Fujiyama N, Seki A, Ogawa K, et al. Nippon Steel and Sumitomo Metal Technical Report, 2018, 119, 94.
53 Lambert-Perlade A, Gourgues A F, Besson J, et al. Metallurgical and Materials Transactions A, 2004, 35, 1050.
54 Wan X L, Wei R, Wu K M. Materials Characterization, 2010, 61(7), 729.
55 Lan L G, Qiu C L, Zhao D W, et al. Materials Science and Engineering A, 2011, 529, 197.
[1] 刘佳宾, 刘新灵, 李振. 粉末高温合金夹杂物引起疲劳裂纹萌生微观机理研究现状[J]. 材料导报, 2021, 35(z2): 385-390.
[2] 魏建峰, 宋铁鹏, 王国承. 钢凝固过程元素偏析和夹杂物生成预报模型研究进展[J]. 材料导报, 2021, 35(Z1): 454-461.
[3] 乔家龙, 郭飞虎, 付兵, 胡金文, 项利, 仇圣桃. 无取向硅钢中硫化物的析出机理[J]. 材料导报, 2021, 35(20): 20106-20112.
[4] 白慧怡, 计云萍, 李一鸣, 任慧平. 添加Ti对Fe-4%Si合金凝固组织的影响及机理[J]. 材料导报, 2021, 35(20): 20119-20123.
[5] 樊立峰, 秦美美, 岳尔斌, 肖丽俊, 何建中. 新能源汽车对无取向硅钢的技术挑战[J]. 材料导报, 2021, 35(15): 15183-15188.
[6] 尹畅畅, 余登德, 陈家林, 闻明, 管伟明, 谭志龙. NiPt15合金热变形行为及微观组织演变规律[J]. 材料导报, 2021, 35(10): 10120-10126.
[7] 肖虎, 黄峰, 彭志贤, 戈方宇, 刘静. Ti-Mg-Al复合脱氧X70级抗酸海底管线钢氢捕获效率及HIC敏感性[J]. 材料导报, 2021, 35(10): 10158-10165.
[8] 陈龙海, 李长荣, 黎志英, 李正嵩, 刘占林. HRB500E钢中第二相VC的异质形核分析与晶粒细化[J]. 材料导报, 2020, 34(Z1): 436-439.
[9] 苏小虎, 栗卓新, 马思鸣, 李红, 张天理, KIM Hee Jin. 氧含量及夹杂物对高强钢金属芯焊丝E120C-K4熔敷金属冲击韧性的影响[J]. 材料导报, 2020, 34(11): 11049-11052.
[10] 刘新灵, 陶春虎, 王天宇. 夹杂物形状对夹杂/基体界面应力应变分布的影响[J]. 材料导报, 2019, 33(z1): 436-439.
[11] 王正军. 真空感应电磁悬浮熔炼对A356铝合金组织和性能的影响[J]. 材料导报, 2019, 33(22): 3801-3805.
[12] 陈渊, 蓝永庭, 张克实, 蔡敢为, 胡桂娟. AZ31镁合金微结构关联的孪生形核与长大统计分析[J]. 材料导报, 2018, 32(20): 3566-3572.
[13] 祝佳林, 刘施峰, 柳亚辉, 姬静利, 李丽娟. 冷轧高纯钽板退火过程中微观组织及织构演变的梯度效应[J]. 材料导报, 2018, 32(20): 3595-3600.
[14] 敖晓辉, 邢书明, 李少乾, 韩青友, 王如芬. 杂质元素对铝硅合金Si相形核影响的探讨[J]. 材料导报, 2018, 32(15): 2647-2652.
[15] 石苗, 侯海, FiazAhmad, 尹大川. 用于蛋白质结晶的形核剂研究综述[J]. 《材料导报》期刊社, 2018, 32(11): 1820-1826.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed