Please wait a minute...
材料导报  2018, Vol. 32 Issue (15): 2647-2652    https://doi.org/10.11896/j.issn.1005-023X.2018.15.016
  金属与金属基复合材料 |
杂质元素对铝硅合金Si相形核影响的探讨
敖晓辉1, 邢书明1, 李少乾1, 韩青友2, 王如芬3
1 北京交通大学机械与电子控制工程学院,北京 100044;
2 普渡大学机械工程技术系,西拉法叶,美国 47907;
3 天津立中合金集团有限公司,天津 300457
Influence of Impurity Elements on Si-phase Nucleation in Al-Si Alloy
AO Xiaohui1, XING Shuming1, LI Shaoqian1, HAN Qingyou2, WANG Rufen3
1 School of Mechanical Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044;
2 Department of Mechanical Engineering Technology, Purdue University, West Lafayette, USA 47907;
3 Tianjin Lizhong Alloy Group Co.,Ltd., Tianjin 300457
下载:  全 文 ( PDF ) ( 1644KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Si相的尺寸和形貌对Al-Si合金的性能具有重要的影响。如何在增加Si相的有效形核基底数量以显著提高Si相形核率、细化初晶Si的同时,不削弱共晶Si的细化和变质效果,是提高铝硅合金性能的关键。添加适量的合金元素和微量元素是调节Si相形核率的重要手段之一,特别是在不影响主合金元素成分要求的前提下,通过添加变质剂或细化剂,结合除杂技术和浇铸工艺可以明显细化共晶Si尺寸。但是,废杂铝中的杂质元素对Si相形核率的影响规律及其作用机理尚未达成共识,这是废杂铝再生铸造铝硅合金研究中的热点和难点。
废杂铝再生因其具有原料来源广、可再生利用、节能减排效果显著等优点成为生产铸造铝合金的重要工艺。然而,由于废杂原料含有多种杂质元素,并且它们对铝硅合金中Si相的交互作用关系不确定,所以很难制定相应的技术措施以同时细化共晶Si和初生Si相。目前已经确证AlP为Si相形核的主要基底,β-Fe相为次要基底,氧化膜对二者的形成具有促进作用。近年来,除深入研究常见元素对Si相形核的作用机理外,两种及两种以上元素之间的相互作用对Si相形核的作用机理也开始受到广泛关注。在充分研究AlP、β-Fe相、氧化膜等可作为Si相形核基底物质的结构特性基础上,针对P-X、Fe-X、Ca-X等二元交互作用对Si相形核的影响研究也取得了显著成果。
Sr、Ca、B、Mg等元素一般通过钝化AlP、β-Fe相等Si相形核基底的活性或与AlP反应生成更稳定的化合物这两种机制降低Si相的形核率。当三种或三种以上杂质元素通过直接或间接的交互作用对共晶硅形核率产生影响时,作用机理和作用效果将更为复杂。其主要表现为两种杂质元素单独存在时均有助于发挥第三元素的作用,但同时存在时会反应生成化合物,反而弱化第三元素促进Si相形核的作用。
本文描述了Al-Si合金凝固过程中Si相形核基底的作用,重点讨论了常见杂质元素对Si相形核基底的影响。文末就如何进一步掌握杂质元素对Si相形核的交互作用规律以避免杂质元素的有害影响和充分发挥有益微量元素的积极作用提出了新的建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
敖晓辉
邢书明
李少乾
韩青友
王如芬
关键词:  杂质元素  Al-Si合金  Si相  形核基底    
Abstract: The properties of Al-Si alloys strongly depend on size and morphology of Si phase. How to significantly elevate Si phase nucleation rate and refine primary Si by increasing the number of effective nucleation sites for Si phase without weakening refinement and modification effects of the eutectic Si, has become the key issue to the performance improvement of Al-Si alloys. Adding appropriate amount of alloying elements and trace elements is a major route to adjusting the nucleation rate of Si phase. Under the premise of not affecting the requirements of main alloying elements, the eutectic Si can be considerably refined by adding a modifier or refiner, in combination with an impurity removal technique and a casting process. However, there has been no consensus about the influence of impurity elements in scrap aluminum on the nucleation rate of Si phase and its action mechanism, which is a hotspot and obstacle for the research of Al-Si alloys production through aluminum scrap regeneration and casting.
The advantages of wide source of raw materials, renewability and favorable energy saving effect have made aluminum scrap regeneration a promising technique for producing cast aluminum alloy. However, since the waste raw materials contain a rich variety of impurity elements and these elements’ interaction upon the Si phase in Al-Si alloys is uncertain, it is difficult to formulate the corresponding technological measures simultaneously refine eutectic silicon and primary Si phase. Previous works have confirmed that AlP is the main site for Si nucleation and the β-Fe phase is the secondary site, and that oxide film can promote the formation of both two phases. Therefore, apart from in-depth mechanism study over the common elements in recent years, the dual-phase and multi-phase interaction principles also have drawn wide attention. On the basis of thoroughly studying the structures of AlP, β-Fe phase and oxide film which serve as Si phase nucleation site, impressive achievements have been made in the research on some dual-phase interactions such as P-X, Fe-X and Ca-X.
The elements Sr, Ca, B, and Mg reduce the nucleation rate of the Si phase generally by deactivating AlP, β-Fe or reacting with AlP to form more stable compounds. When there are three or more impurity elements that affect the nucleation rate of eutectic silicon through direct or indirect interaction at the same time, the action mechanism and effect will be more complicated. It can be mainly manifested as that the exclusive existence of either of the two impurity elements promotes the action of the third element, while their coexistence causes inter-element reaction that weakens the enhancement effect of the third element.
This paper makes a summary for the Si-phase nucleation sites of Al-Si alloy in solidification process, an elaborate description for the mechanism of the common impurity elements on Si nucleation substrates, as well as some new suggestions with respect to further exploring and ascertaining the interaction of impurity elements for the sake of inhibiting harmful effects of impurity elements and achieving full potential of beneficial trace elements.
Key words:  impurity elements    Al-Si alloy    Si phase    nucleation substrate
               出版日期:  2018-08-10      发布日期:  2018-08-09
ZTFLH:  TG146.2  
基金资助: 国家国际科技合作专项(2014DFA53050)
通讯作者:  邢书明:通信作者,男,1962年生,博士,教授,博士研究生导师,主要研究方向为金属材料先进成型技术 E-mail:smxing@bjtu.edu.cn   
作者简介:  敖晓辉:男,1986年生,博士研究生,主要研究方向为铝合金熔铸工艺 E-mail:14116361@bjtu.edu.cn
引用本文:    
敖晓辉, 邢书明, 李少乾, 韩青友, 王如芬. 杂质元素对铝硅合金Si相形核影响的探讨[J]. 材料导报, 2018, 32(15): 2647-2652.
AO Xiaohui, XING Shuming, LI Shaoqian, HAN Qingyou, WANG Rufen. Influence of Impurity Elements on Si-phase Nucleation in Al-Si Alloy. Materials Reports, 2018, 32(15): 2647-2652.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.15.016  或          http://www.mater-rep.com/CN/Y2018/V32/I15/2647
1 Javidani M, Larouche D. Application of cast Al-Si alloys in internal combustion engine components[J].International Materials Reviews,2014,59(3):132.
2 Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys[J].Materials & Design,2014,56(4):862.
3 Lu L, Nogita K, Dahle A K. Combining Sr and Na additions in hypoeutectic Al-Si foundry alloys[J].Materials Science and Engineering A,2005,399(1-2):244.
4 Knuutinen A, Nogita K, Mcdonald S D, et al. Modification of Al-Si alloys with Ba, Ca, Y and Yb[J].Journal of Light Metals,2001,1(4):229.
5 Asta M, Beckermann C, Karma A, et al. Solidification microstructures and solid-state parallels: Recent developments future directions[J].Acta Materialia,2009,57(4):941.
6 Zu F Q, Li X Y. Functions and mechanism of modification elements in eutectic solidification of Al-Si alloys: A brief review[J].China Foundry,2014,11(4):287.
7 Wang K, Jiang H Y, Wang Q D. Influence of nanoparticles on microstructural evolution and mechanical properties of Sr-modified Al-10Si alloys[J].Materials Science and Engineering A,2016,666:264.
8 Zhang J H, Xing S M. The effect of calcium element in aluminum alloy[J].Materials Review A: Review Papers,2016,30(10):26(in Chinese).
张佳虹,邢书明.Ca在铝合金中的作用[J].材料导报:综述篇,2016,30(10):26.
9 Zhu M, Jian Z, Yao L, et al. Effect of mischmetal modification treatment on the microstructure, tensile properties, and fracture behavior of Al-7.0%Si-0.3%Mg foundry aluminum alloys[J].Journal of Materials Science,2011,46(8):2685.
10 Emadi D, Rao A K P, Mahfoud M. Influence of scandium on the microstructure and mechanical properties of A319 alloy[J].Materials Science and Engineering A,2010,527(23):6123.
11 Flood S C,Hunt J D. Modification of Al-Si eutectic alloys with Na[J].Metal Science,1981,15(7):287.
12 Mcdonald S D, Nogita K, Dahle A K. Eutectic grain size and stron-tium concentration in hypoeutectic aluminium-silicon alloys[J].Journal of Alloys and Compounds,2006,422(1-2):184.
13 Ho C R, Cantor B. Heterogeneous nucleation of solidification of Si in Al-Si and Al-Si-P alloys[J].Acta Metallurgica Materialia,1995,43(8):3231.
14 Stener R R. Aluminium silicon alloy with a phosphorus content of 0.001 to 0.1%:US,1940922[P].1933-12-26.
15 Qin J, Zou M, Gu T, et al. The featured local structural units in liquid Al80Si15P5 alloy and their relationship with Si modification[J].Journal of Alloys and Compounds,2010,492(1):525.
16 Dahle A K, Nogita K, Zindel J W, et al. Eutectic nucleation and growth in hypoeutectic Al-Si alloys at different strontium levels[J].Metallurgical and Materials Transactions A,2001,32(4):949.
17 Nogita K, Mcdonald S D, Dinnis C M, et al. Recent progress in understanding eutectic solidification in aluminum-silicon foundry alloys[C]∥Solidification of Aluminium Alloys Symposium. Charlotte,2004:93.
18 Ludwig T H, Schaffer P L, Arnberg L. Influence of phosphorus on the nucleation of eutectic silicon in Al-Si alloys[J].Metallurgical and Materials Transactions A,2013,44(13):5796.
19 Nogita K, Mcdonald S D, Tsujimoto K, et al. Aluminium phosphide as a eutectic grain nucleus in hypoeutectic AI-Si alloys[J].Journal of Electron Microscopy,2004,53(4):361.
20 Chen L. The growth morphology evolution and regulation mechanism of primary Mg2Si in modified Al-20wt.%Mg2Si alloys[D].Changchun: Jilin University,2015(in Chinese).
陈磊.变质Al-20wt.%Mg2Si合金中初生Mg2Si生长形貌演化与调控机制[D].长春:吉林大学,2015.
21 Lescuyer H, Ahibert M, Laslaz G. Solubility and precipitation of AlP in Al-Si melts studied with a temperature controlled filtration technique[J].Journal of Alloys and Compounds,1998,279(2):237.
22 Zhu X Z. The evolution and chemical stability of Al-P clusters in Al-Si-X-P melts[D].Jinan: Shandong University,2016(in Chinese).
朱向镇.Al-Si-X-P熔体中Al-P团簇演变行为与化学稳定性的研究[D].济南:山东大学,2016.
23 Dinnis C M, Taylor J A, Dahle A K. As-cast morphology of iron-intermetallics in Al-Si foundry alloys[J].Scripta Materialia,2005,53(8):955.
24 Song D F, Wang S G, Zhou N, et al. Progress in research on iron-rich phase morphology in Al-Si alloy and its influencing factors[J].Journal of Materials Engineering,2016,44(5):120(in Chinese).
宋东福,王顺成,周楠,等.Al-Si合金中富铁相形态及其影响因素研究进展[J].材料工程,2016,44(5):120.
25 Liang S M, Rainer S F. Nucleants of eutectic silicon in Al-Si hypoeutectic alloys: β-(Al, Fe, Si) or AlP phase[J].Metallurgical and Materials Transactions A,2014,45(12):5308.
26 Dai H S, Liu X F. Effects of individual and combined additions of phosphorus,boron and cerium on primary and eutectic silicon in an Al-30Si alloy[J].Rare Metals,2009,28(6):651.
27 Shankar S, Riddle Y W, Makhlouf M M. Nucleation mechanism of the eutectic phases in aluminum-silicon hypoeutectic alloys[J].Acta Materialia,2004,52(15):4447.
28 Shankar S, Riddle Y W, Makhlouf M M. Eutectic solidification of aluminum-silicon alloys[J].Metallurgical and Materials Transactions A,2004,35(9):3038.
29 Suarez P B, Asensio L J. Influence of Sr modification and Ti grain refinement on the morphology of Fe-rich precipitates in eutectic Al-Si die cast alloys[J].Scripta Materialia,2006,54(9):1543.
30 Shankar S, Makhlouf M M. Authors’ reply to reply of discussion on “nucleation mechanism of eutectic phases in aluminum-silicon hy-poeutectic alloys”[J].Metallurgical and Materials Transactions A,2006,37(4):1353.
31 Campbell J, Tiryakioglu M. Review of effect of P and Sr on modification and porosity development in Al-Si alloys[J].Materials Science and Technology,2010,26(3):262.
32 Samuel F H, Ouellet P, Samuel A M, et al. Effect of Mg and Sr additions on the formation of intermetallics in Al-6 wt pct Si-3.5 wt pct Cu-(0.45) to (0.8) wt pct Fe 319-type alloys[J].Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science,1998,29A(12):2871.
33 Mcdonald S D, Nogita K, Dahle A K. Eutectic nucleation in Al-Si alloys[J].Acta Materialia,2004,52(14):4273.
34 Cho Y H, Lee H C, Oh K H, et al. Effect of strontium and phosphorus on eutectic Al-Si nucleation and formation of β-Al5FeSi in hypoeutectic Al-Si foundry alloys[J].Metallurgical and Materials Transactions A,2008,39(10):2435.
35 Zhang Y, Zheng H, Liu Y, et al. Cluster-assisted nucleation of silicon phase in hypoeutectic Al-Si alloy with further inoculation[J].Acta Materialia,2014,70(5):162.
36 Dahle A K, Nogita K, Mcdonald S D, et al. Eutectic modification and microstructure development in Al-Si alloys[J].Materials Science and Engineering A,2005,413-414(6):243.
37 Dahle A K, Nogita K, Zindel J W, et al. Eutectic nucleation and growth in hypoeutectic Al-Si alloys at different strontium levels[J].Metallurgical and Materials Transactions A,2001,32(4):949.
38 Clapham L, Smith R W. Segregation behaviour of strontium in mo-dified and unmodified Al-Si alloys[J].Journal of Crystal Growth,1988,92(1-2):263.
39 John C. Discussion of “Effect of strontium and phosphorus on eutectic Al-Si nucleation and formation of β-Al5FeSi in hypoeutectic Al-Si foundry alloys”[J].Metallurgical and Materials Transactions A,2009,40(5):1009.
40 Lan T, Li J G. Distributions of Sr and Fe and their influence on mo-dification of hypoeutectic Al-Si alloy[J].China Foundry,2016,13(2):85.
41 Kim H J. Effect of calcium on primary silicon particle size in hype-reutectic Al-Si alloys[J].Materials Science and Technology,2003,19(7):915.
42 Al-Helal K, Wang Y, Stone I, et al. Effect of Ca level on the formation of silicon phases during solidification of hypereutectic Al-Si alloys[J].Materials Science Forum,2013,756:117.
43 Ludwig T H, Schaffer P L, Arnberg L. Influence of some trace elements on solidification path and microstructure of Al-Si foundry alloys[J].Metallurgical and Materials Transactions A,2013,44(8):3783.
44 Ludwig T H, Li J H, Schaffer P L, et al. Refinement of eutectic Si in high purity Al-5Si alloys with combined Ca and P additions[J].Metallurgical and Materials Transactions A,2015,46(1):362.
45 Ludwig T H, Dahlen E S, Schaffer P L, et al. The effect of Ca and P interaction on the Al-Si eutectic in a hypoeutectic Al-Si alloy[J].Journal of Alloys and Compounds,2014,586(6):180.
46 Wang L, Bian X F,Yuan S J. Refining effect of boron on eutectic silicon in hypoeutectic Al-Si alloys[J].Acta Metallurgical Sinica,1999,12(4):611.
47 Nogita K, Dahle A K. Effects of boron on eutectic modification of hypoeutectic Al-Si alloys[J].Scripta Materialia,2003,48:307.
48 Geng H Y, Li Y X, Chen X, et al. Effects of boron on eutectic soli-dification in hypoeutectic Al-Si alloys[J].Scripta Materialia,2005,53:69.
49 Geng H Y, Li Y X, Chen X, et al. Effects of B on the eutectic solidification of hypereutectic Al-Si alloy[J].Special Casting & Nonferrous Alloy,2005,25(5):257(in Chinese).
耿慧远,李言祥,陈祥,等.B对亚共晶Al-7Si合金共晶凝固过程的影响[J].特种铸造及有色合金,2005,25(5):257.
50 Sun Y. Study on eutectic growth and precipitation strengthening of Al-Si alloy[D].Nanjing: Southeast University,2007(in Chinese).
孙瑜.铝硅合金共晶生长与沉淀强化研究[D].南京:东南大学,2007.
51 Darlapudi A, Mcdonald S D, Stjohn D H, et al. The influence of ternary Cu additions on the nucleation of eutectic grains in a hypoeutectic Al-10wt.%Si alloy[J].Journal of Alloys and Compounds,2015,646:699.
52 Hansen S C. Antimony modification of aluminum-silicon alloys[D].Wisconsin: University of Wisconsin Madison,2000.
53 Li H L. The behavior of antimony in Al-Si casting alloys[D].Nanning: Guangxi University,2006(in Chinese).
李会玲.锑在铸造铝硅合金中的行为[D].南宁:广西大学,2006.
54 Wu Y Y, Cui X L, Liu X F, et al. Relationship of Ca, B and AlP in Al-12.6Si alloy[J].Rare Metals,2013,32(3):247.
55 Liu X F, Qiao J G, Wu Y Y, et al. EPMA analysis of calcium-rich compounds in near eutectic Al-Si alloys[J].Journal of Alloys and Compounds,2005,388(1):83.
56 Schaffer P L, Arnberg L, Dahle A K, et al. Segregation of particles and its influence on the morphology of the eutectic silicon phase in Al-7 wt.% Si alloys[J].Scripta Materialia,2006,54:677.
57 Grab T, Arnberg L. Influence of TiB2 particles on growth of eutectic silicon in aluminium-silicon alloys[J].International Journal of Cast Metals Research,2006,19(4):201.
[1] 王星星,彭 进,崔大田,薛 鹏,李 红,胡安明,孙国元. 银基钎料在制造业中的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1477-1485.
[2] 张佳虹, 邢书明. Al-Si合金变质元素及其交互作用[J]. 《材料导报》期刊社, 2018, 32(11): 1870-1877.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed