Please wait a minute...
材料导报  2022, Vol. 36 Issue (19): 20110251-16    https://doi.org/10.11896/cldb.20110251
  无机非金属及其复合材料 |
界面太阳能蒸发的应用研究进展
刘小钰1, 汪路1, 张智勇1, 刘传磊1, 方雅涵1, 王冉1, 张友丽1, 王灿1, 苏丽芬1,2, 杨斌1, 周建华2, 苗蕾2
1 安徽大学化学化工学院,安徽省绿色高分子材料重点实验室,合肥 230601
2 桂林电子科技大学材料科学与工程学院,广西电子信息材料构效关系重点实验室,广西 桂林 541004
Research Progress of the Applications of Interfacial Solar Steam Generation
LIU Xiaoyu1, WANG Lu1, ZHANG Zhiyong1, LIU Chuanlei1, FANG Yahan1, WANG Ran1, ZHANG Youli1, WANG Can1, SU Lifen1,2, YANG Bin1, ZHOU Jianhua2, MIAO Lei2
1 Anhui Province Key Laboratory of Environment-friendly Polymer Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
2 Guangxi Key Laboratory of Information Materials,School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
下载:  全 文 ( PDF ) ( 17789KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着经济社会的高速发展,水资源短缺、环境污染、能源危机等是当前世界各国面临的难题。利用丰富的太阳能从海水、污水中蒸馏分离获得纯净水,是一种绿色、可持续的解决方案。然而,传统的太阳能蒸馏提纯原理是加热整体待分离液体,光热转换效率只能达到30%~45%,并且需要昂贵的设备和频繁的维护,这些因素极大地限制了太阳能在水净化领域中的实际应用。近年来出现的界面太阳能蒸发技术通过高效的光热转换材料将吸收的太阳能局限在蒸发层表面,大幅提高了光热转换效率,是一种高效、低成本、环保的水净化技术,在海水淡化、蒸馏分离、发电等领域具有广阔的应用前景,被认为是未来解决水资源危机的一种潜在策略。
本文介绍了界面太阳能蒸发技术中的光热转换机理,简述了光热转换材料、蒸发器结构设计和热能工程管理在太阳能蒸发技术中取得的进展,概述了界面太阳能蒸发技术的应用研究现状,包括海水淡化、污水处理、太阳能蒸馏-发电联产、灭菌以及其他能源转换应用等,总结了当前该技术在实际应用中遇到的瓶颈问题,并展望了界面太阳能蒸发技术的发展趋势。界面太阳能蒸发技术对解决水资源短缺和能源危机具有重要的意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘小钰
汪路
张智勇
刘传磊
方雅涵
王冉
张友丽
王灿
苏丽芬
杨斌
周建华
苗蕾
关键词:  太阳能蒸发  光热转换  水净化  发电    
Abstract: Water shortage, environmental pollution and energy crisis have been the global issues with the fast development of economic society. It is a green and sustainable solution to generate clean water from seawater and wastewater by distillation and separation with abundant solar energy. However, the traditional way of solar purification via heating the whole liquid has extremely low photo-thermal efficiency of 30%—45%, which calls for expensive equipment and frequent maintenance, whose practical applications are limited greatly. Recently, interface solar evaporation is a cost-efficient and environmental purification technology via heat location on the surface of evaporator, whose evaporation efficiency is much higher than that of the traditional way. This technology is a promising strategy to address the problem of water crisis in future and be applied in seawater desalination, distillation separation and power generation.
In this review, the mechanism of photothermal conversion in interfacial solar evaporation technology is introduced, and the progress of photothermal conversion materials, evaporator structure design and thermal energy engineering management in solar evaporation technology is briefly described. The current development of interfacial solar evaporation in the areas of seawater desalination, water purification, solar distillation-cogeneration, sterilization and other energy generation is reviewed.The bottleneck problems encountered in practical application of this technology are summarized, and the development trend of interfacial solar evaporation technology is prospected. Interfacial solar evaporation technology is of great significance for solving water shortage and energy crisis.
Key words:  solar evaporation    solar-thermal conversion    water purification    power generation
出版日期:  2022-10-10      发布日期:  2022-10-12
ZTFLH:  O647  
基金资助: 广西电子信息材料构效关系重点实验室(桂林电子科技大学)(201008-K)
通讯作者:  ausulf@sina.com   
作者简介:  刘小钰,2019年6月毕业于河南工业大学,获得工学学士学位。现为安徽大学化学与化工学院硕士研究生,研究方向为材料工程。
苏丽芬,安徽大学讲师。2007年6月毕业于武汉理工大学,获得学士学位;2009年6月毕业于中国科学院广州能源研究所,获得硕士学位;2012年6月毕业于中国科学院广州能源研究所,获得热能工程专业博士学位。同年入职安徽大学化学化工学院材料系工作至今,主要从事材料热传导、能源材料方面的研究,重点研究太阳能光热材料的热管理。
引用本文:    
刘小钰, 汪路, 张智勇, 刘传磊, 方雅涵, 王冉, 张友丽, 王灿, 苏丽芬, 杨斌, 周建华, 苗蕾. 界面太阳能蒸发的应用研究进展[J]. 材料导报, 2022, 36(19): 20110251-16.
LIU Xiaoyu, WANG Lu, ZHANG Zhiyong, LIU Chuanlei, FANG Yahan, WANG Ran, ZHANG Youli, WANG Can, SU Lifen, YANG Bin, ZHOU Jianhua, MIAO Lei. Research Progress of the Applications of Interfacial Solar Steam Generation. Materials Reports, 2022, 36(19): 20110251-16.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110251  或          http://www.mater-rep.com/CN/Y2022/V36/I19/20110251
1 Brongersma M L, Halas N J, Nordlander P. Nature Nanotechnology, 2015, 10(1), 25.
2 Sun W, Zhong G, Kübel C, et al. Angewandte Chemie, 2017, 56(22), 6329.
3 Chen M, He Y, Huang J, et al. Energy Conversion and Management, 2016, 127, 293.
4 Mu X, Gu Y, Wang P, et al. Solar Energy Materials and Solar Cells, 2021, 220, 110842.
5 Ghasemi H, Ni G, Marconnet A M, et al. Nature Communications, 2014, 5(1), 798.
6 Li X, Xu W, Tang M, et al. Proceedings of the National Academy of Sciences, 2016, 113(49), 13953.
7 Yang Y, Yang X, Fu L, et al. ACS Energy Letters, 2018, 3(5), 1165.
8 Shang W, Deng T. Nature Energy, 2016, 1(9), 16133.
9 Vélez-Cordero J R, Hernández-Cordero J. International Journal of Thermal Sciences, 2015, 96, 12.
10 Hessel C M, Pattani V P, Rasch M,et al. Nano Letters, 2011, 11(6), 2560.
11 Gao M, Zhu L, Peh C K, et al. Energy & Environmental Science, 2019, 12(3), 841.
12 Govorov A O, Richardson H H. Nano Today, 2007, 2(1), 30.
13 Richardson H H, Carlson M T, Tandler P J, et al. Nano Letters, 2009, 9(3), 1139.
14 Liu G, Xu J, Wang K. Nano Energy, 2017, 41, 269.
15 Gao M, Zhu L, Peh C K, et al. Energy & Environmental Science, 2019, 12(3), 841.
16 Liu Y, Yu S, Feng R, et al. Advanced Materials, 2015, 27(17), 2768.
17 Zhou L, Zhuang S, He C, et al. Nano Energy, 2017, 32, 195.
18 Ye M, Jia J, Wu Z, et al. Advanced Energy Materials, 2017, 7(4), 421.
19 Zhang C, Yan C, Xue Z, et al. Small, 2016, 12(38), 5320.
20 Chou S S, Kaehr B, Kim J, et al. Angewandte Chemie, 2013, 52(15), 4160.
21 Ito Y, Tanabe Y, Han J, et al. Advanced Materials, 2015, 27(29), 4302.
22 Zhang P, Li J, Lyu L X, et al. ACS Nano, 2017, 11(5), 5087.
23 Hu X, Xu W, Zhou L, et al. Advanced Materials, 2017, 29(5), 1604031.
24 Liu Y, Yu S, Feng R, et al. Advanced Materials, 2015, 27(17), 2768.
25 Zhou L, Tan Y, Wang J, et al. Nature Photonics, 2016, 10(6), 393.
26 Qiao P, Wu J, Li H, et al. ACS Applied Materials & Interfaces, 2019, 11(7), 7066.
27 Sun Z, Wang J, Wu Q, et al. Advanced Functional Materials, 2019, 29(29), 1901311.
28 Chen J, Feng J, Li Z, et al. Nano Letters, 2019, 19(1), 400.
29 Yin K, Yang S, Wu J, et al. Journal of Materials Chemistry A, 2019, 7(14), 8361.
30 Wang J, Li Y, Deng L, et al. Advanced Materials, 2017, 29(3), 1603730.
31 Yang X, Yang Y, Fu L, et al. Advanced Functional Materials, 2018, 28(3), 1704505.
32 Geng Y, Zhang K, Yang K, et al. Carbon, 2019, 155, 25.
33 Shi Y S, Li R Y, Jin Y, et al. Joule, 2018, 2(6), 1171.
34 Li X, Li J, Lu J, et al. Joule, DOI: 10.1016/j.joule.2018.04.004.
35 Li T, Fang Q, Xi X, et al. Journal of Materials Chemistry A, 2019, 7(2), 586.
36 Chen C J, Li Y J, Song J W, et al. Advanced Materials, 2017, 29(30), 1701756.
37 Li X, Lin R, Ni G, et al. National Science Review, 2018, 5(1), 70.
38 Cui L F, Zhang P P, Xiao Y K, et al. Advanced Materials, 2018, 30(22), 1706805.
39 Robert F. Science, 2006, 313(5790), 1088.
40 Werber J R, Osuji C O, Elimelech M. Nature Reviews Materials, 2016, 1(5), 16018.
41 Zhou L, Tan Y, Wang J, et al. Nature Photonics, 2016, 10(6), 393.
42 Li J, Zhou X, Mu P, et al. ACS Applied Materials & Interfaces, 2020, 12(1), 798.
43 Liu C, Cai C, Zhao X. ACS Sustainable Chemistry & Engineering, 2020, 8(3), 1548.
44 Xue G, Chen Q, Lin S, et al. Global Challenges, DOI:10.1002/gch2.201800001.
45 Chiavazzo E, Morciano M, Viglino F, et al. Nature Sustainability, 2018, 1(12), 763.
46 Finnerty C, Zhang L, Sedlak D L, et al. Environmental Science & Technology, 2017, 51(20), 11701.
47 Shi Y, Zhang C, Li R, et al. Environmental Science & Technology, 2018, 52(20), 11822.
48 Wang P. Environmental Science Nano, 2018, 5(5), 178.
49 Lou J, Liu Y, Wang Z, et al. ACS Applied Materials & Interfaces, 2016, 8(23), 14628.
50 Zhou J, Sun Z, Chen M, et al. Advanced Functional Materials, 2016, 26(29), 5368.
51 Higgins M W, Shakeel Rahmaan A, Devarapalli R R, et al. Solar Energy, 2018, 159, 800.
52 Hao D, Yang Y, Xu B, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(8), 10789.
53 Huang W, Su P, Cao Y, et al. Nano Energy, 2020, 69, 104465.
54 Guo Y, Lu H, Zhao F, et al. Advanced Materials, 2020, 32(11), 1907061.
55 Bleischwitz R, Spataru C, Vandeveer S D, et al. Nature Sustainability, 2018, 1(12), 737.
56 Parmananda M, Ryali B, Mukherjee P P, et al. Journal of Physical Che-mistry C, 2019, 123(50), 30106.
57 Li X, Min X, Li J, et al. Joule, 2018, 2(11), 2477.
58 Minmin G, Connor K P, Huy T P, et al. Advanced Energy Materials, 2018, 8(25), 1870074.
59 Zhu L, Gao M, Peh C, et al. Advanced Energy Materials, 2018, 8(16), 1702149.
60 Zhang Y, Ravi S K, Tan S C. Nano Energy, 2019, 65, 104006.
61 Ikeda Y, Fukui K, Murakami Y, et al. Physical Chemistry Chemical Physics, 2019, 21 (46), 25838.
62 Yang P, Liu K, Chen Q, et al. Energy & Environmental Science, 2017, 10(9), 1923.
63 Wang Z L, Chen J, Lin L. Energy & Environmental Science, 2015, 8(8), 2250.
64 Fan F, Tian Z, Lin W Z. Nano Energy, 2012, 1(2), 328.
65 Niu S, Wang Z L. Nano Energy, 2015, 14, 161.
66 Wang Z L. Materials Today, 2017, 20(2), 74.
67 Liu G, Chen T, Xu J, et al. Journal of Materials Chemistry A, 2018, 6(38), 18357.
68 Zheng L, Lin Z, Cheng G, et al. Nano Energy, 2014, 9, 291.
69 Duan J, Hu T, Zhao Y, et al. Angewandte Chemie, 2018, 57(20), 5746.
70 Xu L, Jiang T, Lin P, et al. ACS Nano, 2018, 12(2), 1849.
71 Gao M, Peh C K, Phan H T, et al. Advanced Energy Materials, 2018, 8(25), 1870114.
72 Li J, Liu K, Ding T, et al. Nano Energy, 2019, 58, 797.
73 Kraemer D, Poudel B, Feng H, et al. Nature Materials, 2011, 10(7), 532.
74 Beretta D, Neophytou N, Hodges J M, et al. Materials Science & Engineering, 2019, 138, 100501.
75 Lee J, Kim J, Kim T Y, et al. Journal of Materials Chemistry A, 2016, 4(21), 7983.
76 Zhang Y, Ravi S K, Tan S C. Nano Energy, 2019, 65, 104006.
77 Zhu L, Ding T, Gao M, et al. Advanced Energy Materials, 2019, 9(22), 1900250.
78 Li X, Min X, Li J, et al. Joule, 2018, 2(11), 2477.
79 Dupont M F, Macfarlane D R, Pringle J M. Chemical Communications, 2017, 53(47), 6288.
80 Yang P, Liu K, Chen Q, et al. Angewandte Chemie, 2016, 55(39), 12050.
81 Im H, Kim T, Song H, et al. Nature Communications, 2016, 7(1), 10600.
82 Shen Q, Ning Z, Fu B, et al. Journal of Materials Chemistry A, 2019, 7(11), 6514.
83 Briscoe J, Dunn S. Nano Energy, 2015, 14, 15.
84 Zhu L, Gao M, Peh C, et al. Advanced Energy Materials, 2018, 8(16), 1870074.
85 Logan B E, Elimelech M. Nature, 2012, 488(7411), 313.
86 Broere D L J, Plessius R, van der Vlugt J I. Chemical Society Reviews, 2015, 44(19), 6886.
87 Pouyfaucon A B, García-Rodríguez L. Desalination, 2018, 435, 60.
88 Yang P, Liu K, Chen Q, et al. Energy & Environmental Science, 2017, 10(9), 1923.
89 Xue G, Xu Y, Ding T, et al. Nature Nanotechnology, 2017, 12(4), 317.
90 Piatkowski N, Wieckert C, Weimer A W, et al. Energy & Environmental Science, 2011, 4(1), 73.
91 Varghese O K, Paulose M, Latempa T J, et al. Nano Letters, 2010, 10(2), 750.
92 Neumann O, Neumann A D, Tian S, et al. ACS Energy Letters, 2017, 2(1), 8.
93 Li J, Du M, Lyu G, et al. Advanced Materials, 2018, 30(49), 1805159.
94 Chang C, Tao P, Xu J, et al. ACS Applied Materials & Interfaces, 2019, 11(20), 18466.
[1] 李翠芹, 裴玉冰, 范华, 郭维华, 王天剑, 吴比, 巩秀芳. 火电机组高中压转子选材的研究进展[J]. 材料导报, 2022, 36(Z1): 22010097-7.
[2] 杜咪咪, 薛朝华, 郭小静, 贾顺田. 光致发热材料的超疏水化改性及其对光热转换性能的影响[J]. 材料导报, 2022, 36(15): 21010272-5.
[3] 苏丽芬, 常展鹏, 宁玉盈, 汪路, 方雅涵, 方炳虎, 柯玉超, 杨斌, 夏茹, 钱家盛, 苗蕾. 柔性多孔硅橡胶负载纳米CuS的太阳能蒸发性能研究[J]. 材料导报, 2021, 35(18): 18024-18029.
[4] 张庆, 刘呈坤, 毛雪, 吴月霞, 江志威, 赵丽, 洪洁. 压电纳米发电机材料选用和结构设计研究进展[J]. 材料导报, 2021, 35(11): 11066-11076.
[5] 王成君, 段志英, 苏琼, 王爱军, 孟淑娟. 以多级孔碳为支撑基体的复合相变材料在光热转换与存储方面的研究进展[J]. 材料导报, 2020, 34(23): 23074-23080.
[6] 孙诚, 顾佳俊, 章潇慧, 祝弘滨, 刘佰博, 张丽娇, 刘庆雷, 张旺, 张荻. 基于生物精细构型的光催化材料和光热转换材料的研究进展[J]. 材料导报, 2019, 33(21): 3662-3668.
[7] 马晨雨, 李晓禹, 张绘, 李建强, 赵建玲, 贺刚, 李江涛, 齐涛. 亚微米级Ti4O7的制备及其光热转换性能[J]. 材料导报, 2018, 32(23): 4079-4083.
[8] 义志涛, 何国强. 柔性热电发电器的关键工艺及其展望[J]. 材料导报, 2018, 32(19): 3332-3337.
[9] 杜宝强, 王怀有, 李锦丽, 赵有璟, 杨红军, 钟远, 王敏. 面向太阳能光热发电的NaNO3-KNO3-Mg(NO3)2三元硝酸熔盐*[J]. 《材料导报》期刊社, 2017, 31(18): 1-4.
[10] 赵 兵, 祁 宁, 张德锁, 李青松, 张克勤. 适用于生物体系的自驱动纳米技术研究进展[J]. 材料导报, 2017, 31(1): 126-130.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed