Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (15): 30-35    https://doi.org/10.11896/j.issn.1005-023X.2017.015.005
  材料综述 |
磁性水凝胶作为药物载体的应用研究进展*
韩晓东, 张稳, 于坤, 贾庆明, 陕绍云, 苏红莹
昆明理工大学化学工程学院,昆明 650500;
Advances in Application of Magnetic Hydrogels as Drug Carriers
HAN Xiaodong, ZHANG Wen, YU Kun, JIA Qingming, SHAN Shaoyun, SU Hongying
Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500;
下载:  全 文 ( PDF ) ( 1694KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 磁性水凝胶是一类同时具有磁性材料、高分子材料及水凝胶的性质特点的无机/有机复合材料。因具有优良的磁学性能及生物相容性,其作为新一代的药物载体可以实现磁响应、磁靶向及磁热疗等功能,在药物控制释放领域具有广阔的应用前景。对磁性水凝胶的制备方法及其在药物载体领域的研究情况进行了综述,详细介绍了磁性水凝胶作为药物载体的两种药物释放机理(ON/OFF模型及热敏释放原理),及其在磁靶向药物控释、磁热疗和磁共振成像方面的应用研究现状。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩晓东
张稳
于坤
贾庆明
陕绍云
苏红莹
关键词:  磁性纳米颗粒  水凝胶  药物载体  磁靶向  磁热疗    
Abstract: Magnetic hydrogel combines the properties and advantages of magnetic material, polymer material and hydrogel into a single platform, which is widely used as biomaterials. Because of their excellent magnetic properties and biocompatibility, magnetic hydrogel can be used as multifunctional drug delivery systems (DDS) for magnetic sensitive drug release, targeting, hyperthermia and magnetic resonance imaging (MRI). In this paper, recent progresses of the preparation and applications of magnetic hydrogel as drug delivery systems are reviewed. And the drug release mechanism of magnetic hydrogel, including the ON/OFF release model and temperature-sensitive release behavior are described in detail.
Key words:  magnetic nanoparticles    hydrogel    drug carrier    magnetic targeting    magnetic hyperthermia
出版日期:  2017-08-10      发布日期:  2018-05-04
ZTFLH:  O631  
基金资助: *国家自然科学基金(51503090);昆明理工大学自然科学基金(14118713)
作者简介:  韩晓东:男,1992年生,硕士研究生,研究方向为磁性水凝胶材料 E-mail:461085683@qq.com 苏红莹:通讯作者,女,1986年生,博士,硕士研究生导师,研究方向为纳米生物材料 E-mail:hongyingsu@kmust.edu.cn
引用本文:    
韩晓东, 张稳, 于坤, 贾庆明, 陕绍云, 苏红莹. 磁性水凝胶作为药物载体的应用研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 30-35.
HAN Xiaodong, ZHANG Wen, YU Kun, JIA Qingming, SHAN Shaoyun, SU Hongying. Advances in Application of Magnetic Hydrogels as Drug Carriers. Materials Reports, 2017, 31(15): 30-35.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.015.005  或          https://www.mater-rep.com/CN/Y2017/V31/I15/30
1 Tietze R, Lyer S, Dürr S, et al. Nanoparticles for cancer therapy using magnetic forces[J]. Nanomedicine, 2017,7(3):447.
2 Parker B S, Rautela J, Hertzog P J. Antitumour actions of interfe-rons: Implications for cancer therapy[J]. Nat Rev Cancer,2016,16(3):131.
3 Carr C, Ng J, Wigmore T, et al. The side effects of chemotherapeutic agents[J]. Current Anaesthesia Critical Care,2008,19(2):70.
4 Miller K D, Siegel R L, Lin C C, et al. Cancer treatment and survivorship statistics, 2016[J]. Ca A Cancer J Clinicians,2016,66(4):271.
5 Li X L, Oduola W O, Qian L, et al. Integrating multiscale modeling with drug effects for cancer treatment[J]. Cancer Informatics,2016,14(S5):21.
6 Jaiswal M K, Pradhan L, Vasavada S, et al. Magneto-thermally responsive hydrogels for bladder cancer treatment: Therapeutic efficacy and in vivo biodistribution[J]. Colloids Surf B Biointerfaces,2015,136:625.
7 Ju Y C, Thapa R K, Yong C S, et al. Nanoparticle-based combination drug delivery systems for synergistic cancer treatment[J]. J Pharmaceutical Investigation,2016,46(4):325.
8 Zhang T, Cai S, et al. Hyaluronan-lysine cisplatin drug carrier for treatment of localized cancers: Pharmacokinetics, tolerability, and efficacy in rodents and canines[J]. J Pharmaceutical Sci,2016, 105(6):1891.
9 Emanuel N, Neuman M, Barak S. Sustained-release drug carrier composition: US, US8877242[P].2014.
10 Brandl F, Kastner F, Gschwind R M, et al. Hydrogel-based drug delivery systems: Comparison of drug diffusivity and release kinetics[J]. J Controlled Release,2010,142(2):221.
11 Ai H. Layer-by-layer capsules for magnetic resonance imaging and drug delivery[J]. Adv Drug Delivery Rev,2011,63(9):772.
12 Kwon G S, Okano T. Polymeric micelles as new drug carriers[J]. Adv Drug Delivery Rev,1996,21(2):107.
13 Su H, Liu Y, Wang D, et al. Amphiphilic starlike dextran wrapped superparamagnetic iron oxide nanoparticle clsuters as effective magnetic resonance imaging probes[J]. Biomaterials,2012,34(4):1193.
14 Wang Q Y, Su H Y, Xia C C, et al. Amphiphilic dextran/magnetite nanocomposites as magnetic resonance imaging probes[J]. Sci Bull,2009,54(17):2925.
15 Li Y, Huang G, Zhang X, et al. Magnetic Hydrogels and their potential biomedical applications[J]. Adv Funct Mater,2013,23(6):660.
16 Ahmad H, Sultana M S, Alam M A, et al. Evaluating a simple blending approach to prepare magnetic and stimuli-responsive composite hydrogel particles for application in biomedical field[J]. Express Polym Lett,2016,10(8):664.
17 Tóth I Y, Veress G, Szekeres M, et al. Magnetic hyaluronate hydrogels: Preparation and characterization[J]. J Magn Magn Mater,2014,380:175.
18 Wang Y H, Xia M G, Wu Y T, et al. Preparation and characterization of PNIPAM nanocomposite hydrogels with controllable magne-tic properties[J].J Funct Polym,2015,28(1):32(in Chinese).
王益亨, 夏梦阁, 武永涛,等. 磁性能可控的聚(N-异丙基丙烯酰胺)基纳米复合水凝胶的制备与表征[J]. 功能高分子学报,2015,28(1):32.
19 Zhao W, Odelius K, Edlund U, et al. In situ synthesis of magnetic field-responsive hemicellulosehydrogels for drug delivery[J]. Biomacromolecules,2015,16(8):2522.
20 Jiang L, Liu P. Design of magnetic attapulgite/fly ash/poly(acrylic acid) ternary nanocomposite hydrogels and performance evaluation as selective adsorbent for Pb2+ ion[J]. ACS Sustainable Chem Eng,2014, 2(7):1785.
21 Messing R, Frickel N, Belkoura L, et al. Cobalt ferrite nanoparticles as multifunctional cross-linkers in PAAm ferrohydrogels[J]. Macromolecules,2011,44:2990.
22 Guo X, Wang L, Wei X, et al. Polymer-based drug delivery systems for cancer treatment[J]. J Polym Sci A Polym Chem,2016,54(22):3525.
23 Galot R, Machiels J P. Safety of drug treatments for head and neck cancer[J]. Expert Opinion Drug Safety, 2016,15(11):1527.
24 Rao S Q, Xue Z S, Lu G H. Preparation and application of magnetic sensitive hydrogel[J].New Chem Mater,2013,41(11):187(in Chinese).
饶思奇, 徐祖顺, 路国红. 磁性水凝胶的制备及其应用研究进展[J]. 化工新型材料,2013,41(11):187.
25 Uva M, Pasqui D, Mencuccini L, et al. Influence of alternating and static magnetic fields on drug release from hybrid hydrogels containing magnetic nanoparticles[J]. J Biomater Nanobiotechnol,2014,5(4):924.
26 Satarkar N S, Hilt J Z. Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release[J]. J Controlled Release,2008,130(3):246.
27 Campbell S, Maitland D, Hoare T. Enhanced pulsatile drug release from injectable magnetic hydrogels with embedded thermosensitive microgels[J]. ACS Macro Lett,2015,4(3):312.
28 Zhang N, Lock J, Sallee A, et al. Magnetic nanocomposite hydrogel for potential cartilage tissue engineering: Synthesis, characterization, and cytocompatibility with bone marrow derived mesenchymal stem Cells[J]. ACS Appl Mater Interfaces,2015,7(37):20987.
29 Zhang D, Sun P, Li P, et al. A magnetic chitosan hydrogel for sustained and prolonged delivery of Bacillus Calmette-Guerin in the treatment of bladder cancer[J]. Biomaterials,2013,34(38):10258.
30 Gobbo O L, Sjaastad K, Radomski M W, et al. Magnetic nanoparticles in cancer theranostics[J]. Theranostics,2015,5(511):1249.
31 Huang J, Xue Y, Cai N, et al. Efficient reduction and pH co-triggered DOX-loaded magnetic nanogel carrier using disulfide crosslin-king[J]. Mater Sci Eng C: Mater Biol Appl,2015,46:41.
32 Sung B, Shaffer S, Sittek M, et al. Alternating magnetic field-responsive hybrid gelatin microgels for controlled drug release[J]. J Visualized Experiments,2016,108:53680.
33 Reddy N N, Ravindra S, Reddy N M, et al. Temperature responsive hydrogel magnetic nanocomposites for hyperthermia and metal extraction applications[J]. J Magn Magn Mater,2015,394:237.
34 Zhu X, Zhang H, Huang H, et al. Functionalized graphene oxide-based thermosensitive hydrogel for magnetic hyperthermia therapy on tumors[J]. Nanotechnology,2015,26(36):365103.
35 Kim J I, Chun C, Kim B, et al. Thermosensitive/magnetic poly(organophosphazene) hydrogel as a long-term magnetic resonance contrast platform[J]. Biomaterials,2012,33(1):218.
36 Wang X, Niu D, Li P, et al. Dual-enzyme-loaded multifunctional hybrid nanogel system for pathological responsive ultrasound imaging and T2-weighted magnetic resonance imaging[J]. ACS Nano,2015, 9(6):5646.
[1] 唐言, 严娇, 王犁, 安鹏, 颜贵龙, 来婧娟, 李振宇, 周利华, 武元鹏. 羧甲基瓜尔胶/聚乙烯醇/聚丙烯酰胺形状记忆导电水凝胶的制备及性能研究[J]. 材料导报, 2025, 39(3): 23090015-7.
[2] 黎涛, 孟威明, 王丁丁, 卫春祥, 鲁红典. 多层结构聚丙烯酰胺水凝胶太阳能蒸发器的制备及性能[J]. 材料导报, 2024, 38(7): 22080085-5.
[3] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[4] 白忠薛, 王学川, 李佳俊, 冯宇宇, 白波涛, 黄梦晨, 岳欧阳, 刘新华. 生物质基导电水凝胶的研究进展[J]. 材料导报, 2024, 38(4): 22090215-14.
[5] 张静, 高陈陈, 吴明明, 陈诚. 微/纳米级有机空心粒子构造及功能应用研究进展[J]. 材料导报, 2024, 38(21): 23040199-11.
[6] 伍红雨, 肖海, 曾向东, 赵晓昱. 导电水凝胶材料研究进展及在超级电容器的应用[J]. 材料导报, 2024, 38(19): 23060125-8.
[7] 刘晨爽, 田野, 盛显良, 斯琴塔娜, 张玉辉. 天然高分子多糖在药物传递领域中的应用[J]. 材料导报, 2024, 38(19): 23050200-18.
[8] 吴强, 商伶俐, 李学锋, 张高文, 黄以万, 龙世军. 多糖聚电解质静电组装高强度水凝胶膜的组织粘接抑菌性[J]. 材料导报, 2024, 38(18): 23030284-6.
[9] 侯福星, 白一鸣, 沈頔, 王剑云. 微生物自修复混凝土载体材料研究进展[J]. 材料导报, 2024, 38(13): 23040048-15.
[10] 杨水艳, 盛扬, 孙一新, 蔡仁钦, Mark Bradley, 张嵘. 基于丙烯酸-N-琥珀酰亚胺酯共聚物交联剂的壳聚糖水凝胶的生物相容性研究[J]. 材料导报, 2024, 38(12): 22120119-10.
[11] 王石, 陈昱恺, 周新甲, 呼博渊, 王勇, 李瑜, 井新利. 导电高分子水凝胶及其应变传感性能研究进展[J]. 材料导报, 2024, 38(11): 22120184-11.
[12] 饶春兴, 廖静文, 张雪慧, 武晓刚, 王艳芹, 陈维毅. 荧光水凝胶传感器及其传感响应机制研究进展[J]. 材料导报, 2023, 37(5): 21010130-8.
[13] 何贤会, 杨培昕, 卢小鸾, 汤陆扬, 付阳洋, 彭黔荣, 杨敏. 用于阴道黏膜给药的纳米胶束复合温敏水凝胶的制备及性能评价[J]. 材料导报, 2023, 37(19): 22040117-7.
[14] 李晓玉, 连海兰. 仿贻贝水凝胶的研究进展[J]. 材料导报, 2023, 37(19): 21120186-11.
[15] 周鑫, 关水, 孙长凯. 基于壳聚糖/黄原胶互穿网络的导电水凝胶支架制备及性能研究[J]. 材料导报, 2023, 37(18): 22030238-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed