Please wait a minute...
材料导报  2020, Vol. 34 Issue (5): 5068-5077    https://doi.org/10.11896/cldb.18100095
  无机非金属及复合材料 |
低膨胀β-锂霞石基复合材料的研究现状与进展
薛耀辉1, 蒋军彪1, 张辉1, 文昌秀2, 苏宗锋1, 崔晓霞2, 郭海涛2
1 西安现代控制技术研究所,西安 710065;
2 中国科学院西安光学精密机械研究所,西安 710119
Research and Progress of Low-expansion β-eucryptite Composites
XUE Yaohui1, JIANG Junbiao1, ZHANG Hui1, WEN Changxiu2, SU Zongfeng1, CUI Xiaoxia2, GUO Haitao2
1 Xi’an Modern Control Technology Research Institute, Xi’an 710065, China;
2 Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences (CAS), Xi’an 710119, China
下载:  全 文 ( PDF ) ( 3697KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热膨胀系数是材料的重要参数之一,自然界中,绝大多数物质都具有较高的热膨胀系数,热胀冷缩的情况较为严重,因此,这类物质通常具有较差的抗热冲击性,不能在温度变化巨大的环境下使用。如不均匀的温度分布和大的温度变化会引起航空航天器件结构破坏和电子设备的几何热变形,从而造成信号失真。然而自然界中,也存在少数具有负热膨胀系数的物质。这类材料的体积会随着温度的升高而减小。利用热膨胀系数的加和性,可将具有低热膨胀系数或负热膨胀系数的材料与高热膨胀系数的材料复合,得到热膨胀系数可调的复合材料,可显著提高其抗热震性。
  负热膨胀材料分为各向同性负热膨胀材料和各向异性负热膨胀材料。各向同性负热膨胀材料主要是ZrV2-xPxO7和ZrW2O8系列,各向异性负热膨胀材料主要包括β-锂霞石、钙钛矿系列、A2M3O12系列、M(CN)2 (M=Zn,Cd)系列、氧化物、沸石系列和金属有机框架结构材料(MOFs)等。
  其中,β-锂霞石因其具有较大的负热膨胀系数(α=-6.1×10-6 K-1)、较低的密度(2.67 g/cm3)、良好的抗热震性、介电性能及红外辐射,常被用作调节复合材料热膨胀系数的材料。β-锂霞石可与其他材料复合,制备出具有负热膨胀或接近“零膨胀”的复合材料,极大地提高材料的抗热震性和尺寸稳定性,进而提高材料的使用寿命。因此,β-锂霞石常被用来制备一些低膨胀陶瓷、微晶玻璃、金属基等复合材料,用于电气设备、电子元件、导弹天线罩涂层材料、激光陀螺仪和天文望远镜等领域。同时,由于β-锂霞石的各向异性热膨胀特性,复合材料中存在较多的残余应力从而使其机械强度下降。为了解决这个问题,可在复合材料中继续引入机械强度较高的纤维或晶须来提高其机械强度,形成三相复合的低膨胀、高机械强度的复合材料。这将进一步拓展此复合材料在惯性导弹、光纤陀螺等航空航天中的应用。本文主要综述了β-锂霞石在金属、玻璃以及陶瓷低膨胀两相或三相复合材料领域的研究现状及进展,概述了这几类低膨胀系数复合材料的制备工艺、热学性能、力学性能及应用领域,对β-锂霞石基复合材料未来的发展趋势及应用前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
薛耀辉
蒋军彪
张辉
文昌秀
苏宗锋
崔晓霞
郭海涛
关键词:  β-锂霞石  负热膨胀  复合材料    
Abstract: Thermal expansion coefficient is one of the important parameters of materials. In nature, most materials exhibit high thermal expansion coefficient which would lead to the phenomenon of thermal-expansion and cold-contraction. Therefore, these materials usually have poor thermal shock resistance and cannot be used in the environment with great temperature changes. The signal distortion usually occurs because of the destruction of aerospace components and the deformation of electronic device resulted from the uneven temperature distribution. It is exciting that there are a few materials with negative thermal expansion coefficient, and their volume decreases with the increase of temperature. Based on the additivity of the expansion coefficient, the compounds with low coefficient of thermal expansion can be obtained by introducing the material with low or negative coefficient of thermal expansion into the high ones, which can remarkably improve their thermal shock resistance.
  Negative thermal expansion materials include isotropic negative thermal expansion materials and anisotropic negative thermal expansion mate-rials. Isotropic negative thermal expansion materials are mainly ZrV2-xPxO7 and ZrW2O8 series. Anisotropic negative thermal expansion materials mainly include β-eucryptite, perovskite series, A2M3O12series, M(CN)2 (M=Zn, Cd) series, oxides, zeolite series and metal organic frameworks (MOFs), etc.
  The β-eucryptite is usually used to adjust the thermal expansion coefficient of composite materials owing to its negative thermal expansion coefficient (α=-6.1×10-6 K-1), low density (2.67 g/cm3), good thermal shock resistance, dielectric properties and infrared radiation. Composite materials with negative thermal expansion or near zero thermal expansion can be fabricated by compounding with other materials, which can greatly improve the thermal shock resistance and dimensional stability of the materials, and thus prolong the life of the materials. Therefore, β-eucryptite has been used to manufacture low expansion ceramics, glass-ceramics, metal matrix composites applied as fillers for electrical equipment, electronic components, device sealants, aircraft high precision components, humidity sensor sensitive materials and lithium ion battery so-lid electrolytes. At the same time, due to the anisotropic thermal expansion property of β-eucryptite, the composites will have more residual stress and lower mechanical strength. In order to solve this problem, fibers or whiskers with high mechanical strength can be introduced to form three-phase composites with low expansion and high mechanical strength, which is beneficial to expand the application of materials in inertial missiles, optic fiber gyro and other aerospace applications. In this paper, the research status and progress of the low expansion two-phase or three-phase composites of metals, glass and ceramics are reviewed. The preparation method, thermal properties and application fields of these low expansion coefficient composites are summarized. The future development trends and application prospects of the composites are also discussed.
Key words:  β-eucryptite    negative thermal expansion    composites
               出版日期:  2020-03-10      发布日期:  2020-01-16
ZTFLH:  TQ175.4  
  TD985  
  TB35  
基金资助: 国家自然科学基金委面上项目(61475189);中国科学院西部之光基金;陕西省自然科学基金青年科学基金项目(2014JQ8345);中科院光谱成像重点实验室开放基金
通讯作者:  cuixx@opt.ac.cn   
作者简介:  薛耀辉,西安现代控制技术研究所高级工程师。2005年在清华大学获得材料学硕士学位,2012年在西安交通大学获得微电子与固体电子学博士学位。目前主要从事光纤通信与光纤传感技术研究;崔晓霞,博士,中国科学院西安光学精密机械研究所副研究员、硕士生导师。2010年在西安光机所获得光学专业博士学位,同年进入中国科学院西安光机所瞬态光学重点实验室先进光电与生物材料研发中心工作。目前从事纳米功能材料及玻璃复合材料的研究工作,近年来,在纳米材料领域发表学术论文40余篇,包括J. Mater. Chem., Nanoscale, Opt. Lett.和Opt. Express等。
引用本文:    
薛耀辉, 蒋军彪, 张辉, 文昌秀, 苏宗锋, 崔晓霞, 郭海涛. 低膨胀β-锂霞石基复合材料的研究现状与进展[J]. 材料导报, 2020, 34(5): 5068-5077.
XUE Yaohui, JIANG Junbiao, ZHANG Hui, WEN Changxiu, SU Zongfeng, CUI Xiaoxia, GUO Haitao. Research and Progress of Low-expansion β-eucryptite Composites. Materials Reports, 2020, 34(5): 5068-5077.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18100095  或          http://www.mater-rep.com/CN/Y2020/V34/I5/5068
1 Wang J, Wang Y. Heat Treatment Technology and Equipment, 2009, 30(3), 39(in Chinese).
王姬, 王铀. 热处理技术与装备, 2009, 30(3), 39.
2 Sleight A W. Annual Review of Materials Research, 1998, 28(1), 29.
3 Mary T A, Evans J S O, Vogt T, et al. Science, 1996, 272(5258), 90.
4 Wang W Z, Wan Y C. Liao Ning Building Materials, 2006(1), 28(in Chinese).
王伟忠, 万玉春. 辽宁建材, 2006(1), 28.
5 Lichtenstein A I, Jones R O, Xu H, et al. Physical Review B, 1998, 58(10), 6219.
6 Liu X S. Rapid synthesis, properties improvement and functionalization of tailored thermal expansion materials. Master’s Thesis, Zhengzhou University, China, 2014(in Chinese).
刘献省. 可控热膨胀材料快速制备、性能改善及功能化研究. 硕士学位论文, 郑州大学, 2014.
7 Evans J S O, Mary T A, Sleight A W. Journal of Solid State Chemistry, 1997, 133(2), 580.
8 Goodwin A L, Kepert C J. Physical Review B, 2005, 71(R), 140301.
9 Artioli G, Dapiaggi M, Fornasini P, et al. Journal of Physics and Che-mistry of Solids, 2006, 67(9), 1918.
10 Lightfoot P, Woodcock D A, Maple M J, et al. Journal of Chemistry Materials, 2001, 11, 212.
11 Dubbeldam D, Walton K S, Ellis D E, et al. Angewandte Chemie International Edition, 2007, 119(24), 4580.
12 Pelletant A, Reveron H, Chêvalier J, et al. Materials Letters, 2012, 66(1), 68.
13 Diao Z C, Lin W L. China Tungsten Industry, 2010, 25(2), 38(in Chinese).
刁志聪, 林伟林. 中国钨业, 2010, 25(2), 38.
14 Yuan H L,Yuan B H, Li F,et al. Acta Physica Sinica, 2012, 61(22), 357(in Chinese).
袁焕丽,袁保合,李芳,等. 物理学报, 2012, 61(22), 357.
15 Korthuis V, Khosrovani N, Sleight A W. Chemistry Matterials , 1995, 7(2), 412.
16 Shen R, Wang C, Wang T M. Materials Review, 2001, 15(8), 35(in Chinese).
沈容, 王聪, 王天民. 材料导报, 2001, 15(8), 35.
17 Kryukova1 O N, Knyazeva A G, Pogrebenkov V M, et al. Journal of Materials Science, 2017, 52(19), 11314.
18 Hu P H, Chen J, Sun C, et al. Journal of the American Ceramic Society, 2011, 94(10), 3600.
19 Ju X W, Wu R M, Ma S B, et al. New Chemical Materials, 2015, 43(12), 15(in Chinese).
居相文, 吴日民, 马双彪, 等. 化工新型材料, 2015, 43(12), 15.
20 Chen X N, Zhu J J, Yang J. Acta Mteriae Compositae Sinica, 2012, 29(3), 145(in Chinese).
程晓农, 朱君君, 杨娟. 复合材料学报, 2012, 29(3), 145.
21 Mary T A, Sleight A W. Journal of Materials Research, 1999, 14(3), 912.
22 Du Z Y, Liang E J, Ding P, et al. The Journal of Light Scattering, 2008, 20(2), 145(in Chinese).
杜志勇, 梁二军, 丁佩, 等. 光散射学报, 2008, 20(2), 145.
23 Yan X H, Li B Y, Riedel R, et al. Journal of the Chinese Ceramic Society, 2009, 37(5), 653(in Chinese).
严学华, 李炳云, Riedel Ralf, 等. 硅酸盐学报, 2009, 37(5), 653.
24 Attfield M P, Sleight A W. Chemistry Materials, 1998, 10(7), 2013.
25 Yun D Q, Gu C Q, Wang X F. Acta Materiae Compositae Sinica, 2005, 22(5), 25(in Chinese).
云大钦, 谷臣清, 王晓芳. 复合材料学报, 2005, 22(5), 25.
26 Du J, Gao Y F, Luo H J. Solar Energy Materials & Solar Cells, 2011, 95(7), 1604.
27 Heaney P J, Prewitt C T, Gibbs G V. In: Silica: physical behavior, geochemistry, and materials applications, Washington, USA, 1994.
28 Pan Zhao. Crystal structure, thermal expansion and related electrical properties in lead/bismuth-based perovskite-type oxides. Master’s Thesis, University of Science and Technology Beijing, China, 2007(in Chinese).
潘昭. Pb/Bi基钙钛矿氧化物的晶体结构、热膨胀及相关电学性能. 硕士学位论文, 北京科技大学, 2017.
29 Yang Y M, Li L C, Feng N. Chinese Journal of Inorganic Chemistry, 2007, 23(3), 382.
30 Tyagi A K, Achary S N, Mathews M D. Journal of Alloys and Compounds, 2002, 339(1), 207.
31 Zhao Y J, Wu Y B, Wang X J, et al. Semiconductor Materials, 2019, 44(1), 43(in Chinese).
赵英杰,伍泳斌,王晓娟, 等. 半导体技术, 2019, 44(1), 43.
32 Liu L N, Li P W, Wang Y. Piezoelectrics & Acoustooptics, 2018,40(6),888(in Chinese).
刘丽娜, 李朋伟, 王颖. 压电与声光, 2018, 40(6), 888.
33 Guan S Y, Yong K, Hu Z M, et al. Journal of Wuhan Institute of Technology, 2018, 40(5), 494(in Chinese).
关淑雅,雍堃,胡正茂, 等. 武汉工程大学学报, 2018, 40(5), 494.
34 Zhao Q, Guo L, Yang X, et al. Journal of Synthetic Crystals, 2018, 47(9), 1811(in Chinese).
赵强,郭莉,杨晓, 等. 人工晶体学报, 2018, 47(9), 1811.
35 He X Y, Li C X. Journal of Synthetic Crystals, 2017,46(8),1575(in Chinese).
何晓宇,李春霞. 人工晶体学报, 2017, 46(8), 1575.
36 Tschaufeser P, Parker S C. Journal of Physics Chemistry, 1995, 99(26), 10609.
37 Fridlyander I N, Klyagina N S, Tykachinskii I D, et al. Metal Science & Heat Treatment, 1974, 16(6), 495.
38 García-Moreno O, Borrell A, Bittmann B, et al. Journal of the European Ceramic Society, 2011, 31(9), 1641.
39 Wang L D, Fei W D, Hu M, et al. Materials Letters, 2002, 53(1), 20.
40 Wang L D, Fei W D, Yao C K. Materials Science & Engineering A, 2002, 336(1), 110.
41 Hu J, Fei W D, Li C, et al. Journal of Materials Science Letters, 1994, 13(24), 1797.
42 Fei W D, Wang L D. Materials Chemistry & Physics, 2004, 85(2-3), 450.
43 Xue Z W, Liu Z, Wang L D, et al. Metal Science Journal, 2010, 26(12), 1521.
44 Cao P. Synthesis, phase composition and property research of BaO-Al2O3-SiO2 glass-ceramics. Master’s Thesis, Tianjin University, China, 2013(in Chinese).
曹培. BaO-Al2O3-SiO2系微晶玻璃的制备、物相及性能研究. 硕士学位论文, 天津大学,2013.
45 Beall G H. Glass Science and Technology, 2000, 73(1), 3.
46 Kang L J. Research on glass-ceramics with negative coefficient of thermal expansion used as fiber bragg grating substrate. Master’s Thesis, Gradua-te University of Chinese Academy of Sciences (Xi'an Institute of Optics and Precision Mechanics), China, 2005(in Chinese).
康利军. 光纤布拉格光栅用负膨胀微晶玻璃基板的研究. 硕士学位论文, 中国科学院研究生院(西安光学精密机械研究所), 2005.
47 Li Y M, Ma G H, Wang Z M, et al. Glass & Enamel, 1998, 26(4), 13(in Chinese).
李月明, 马光华, 汪再明, 等. 玻璃与搪瓷, 1998, 26(4), 13.
48 Tong L, Jiang W H, Liang J, et al. China Ceramics, 2016, 52(11), 6(in Chinese).
童磊, 江伟辉, 梁健, 等. 中国陶瓷, 2016, 52(11), 6.
49 Liu X P, Pang X B, Wan L, et al. Transactions of Materials and Heat Treatment,2016,37(6), 10(in Chinese).
刘小磐, 庞先兵, 万隆, 等. 材料热处理学报, 2016, 37(6), 10.
50 Kryukova O N, Knyazeva A G, Pogrebenkov V M, et al. Journal of Materials Science, 2017, 52(19), 1.
51 Liu Y P. Investigation on low-melting point bismuthate sealing glass. Master’s Thesis, China Jiliang University, China, 2013(in Chinese).
刘远平. 低熔点铋酸盐封接玻璃的研究. 硕士学位论文, 中国计量学院, 2013.
52 Wang M Q, Fan X P, Zhang Y Y, et al. Bulletin of the Chinese Ceramic Society,1992, 11(1), 4(in Chinese).
王民权, 樊先平, 张园园,等. 硅酸盐通报,1992, 11(1), 4.
53 Chen F. Study of low-melting glass of Na2O-Al2O3-B2O3 system.Master’s Thesis, Shaanxi University of Science & Technology, China, 2006(in Chinese).
陈福. Na2O-Al2O3-B2O3系统低熔点玻璃的研究. 硕士学位论文,陕西科技大学,2006.
54 Guo H W. Study on preparation and property of R2O-P2O5-ZnO system lead-free low-melting sealing glass. Master’s Thesis, Shaanxi University of Science & Technology, China, 2006(in Chinese).
郭宏伟. R2O-P2O5-ZnO系统无铅低熔封接玻璃的制备及性能研究. 硕士学位论文, 陕西科技大学, 2006.
55 Yao X G, Ren H S, Jiang S H, et al. Journal of Inorganic Materials, 2018,33(4),385(in Chinese).
姚晓刚, 任海深, 姜少虎, 等. 无机材料学报,2018,33(4),385.
56 Liu J. Journal of the Chinese Ceramic Society, 1997, 25(1), 47(in Chinese).
刘健. 硅酸盐学报, 1997, 25(1), 47.
57 Zhu S Z, Liu Y C, Yu X D, Journal of Beijing Institute of Technology,2000, 20(2), 257(in Chinese).
朱时珍, 刘以成, 于晓东. 北京理工大学学报, 2000, 20(2), 257.
58 Fedorova A, Michelsen L, Scheffler M. Journal of the European Ceramic Society, 2018, 38(2), 719.
59 García-Moreno O, Fernández A. Journal of the European Ceramic Society, 2010, 30(15), 3219.
60 Ramirez I J. Journal of the Ceramic Society of Japan, 2006, 114(1336),1111.
61 Wang B,Xu S C,Xu Z Y,et al.Materials Protection,2013,46(s1),27(in Chinese).
王波, 徐少春, 徐照芸,等.材料保护, 2013, 46(s1),27.
62 Chen N, Wang H, Huo J, et al. Journal of the European Ceramic Society, 2017,37(15),4431.
63 Schneider H, Schreuer J, Hildmann B. Journal of the European Ceramic Society, 2008, 28(2), 329.
64 Travitzky N A. Journal of Materials Science Letters, 1998, 17(19), 1609.
65 Bsat S, Huang X. International Journal of Applied Ceramic Technology, 2016, 13(6), 1074.
66 Aramide F O, Alaneme K K, Olubambi P A, et al. International Journal of Materials and Chemistry,2015,5(6), 127.
67 Li C, Bian C, Han Y, et al. Journal of the European Ceramic Society, 2016, 36(3), 761.
68 Xu G, Zhao H, Cui H, et al. Journal of the Ceramic Society of Japan,2015, 123(1435), 156.
69 Kanimozhi K, Prabunathan P, Selvaraj V, et al. Polymer Composites, 2013, 35(9), 1663.
70 Zhang H, Zhang Y, Wang B, et al. Chemical Engineering Journal, 2015, 268, 109.
71 Garcia-Moreno O, Fernandez A, Torrecillas R. International Journal of Materials Research, 2013, 103(4), 416.
72 Han S X. Hebei Ceramics, 1985(2),13(in Chinese).
韩淑贤. 河北陶瓷, 1985(2), 13.
73 Zhang W, Han Y L, Wu J X, et al. Bulletin of the Chinese Ceramic Socie-ty, 2008, 27(2), 242(in Chinese).
张巍,韩亚苓,吴嘉希,等.硅酸盐通报, 2008, 27(2), 242.
74 Pelletant A, Reveron H, Chevalier J, et al. Journal of the European Ceramic Society, 2013, 33(3), 531.
75 Huang Y M, Shang J, Zhang Y P, et al. China Ceramics, 2015, 51(7), 64(in Chinese).
黄元茂, 商静, 张艳鹏, 等. 中国陶瓷, 2015, 51(7), 64.
76 Choi W K, Kang T S, Kim N I, et al. Journal of Ceramic Processing Research, 2015, 16(3), 324.
77 Fedorova A, Hourlier D, Scheffler M. Ceramics International, 2017, 43(5), 4483.
[1] 任静, 李秀艳, 辛王鹏, 周国伟. Bi2WO6/石墨烯复合材料的制备与光催化应用研究进展[J]. 材料导报, 2020, 34(5): 5001-5007.
[2] 张美云, 罗晶晶, 杨斌, 刘国栋, 宋顺喜. 芳纶纳米纤维的制备及应用研究进展[J]. 材料导报, 2020, 34(5): 5158-5166.
[3] 张恒, 周玉惠, 张飞, 龚维, 何力. 聚丙烯/β-环糊精复合材料发泡性能及力学性能的研究[J]. 材料导报, 2020, 34(4): 4148-4152.
[4] 季根顺, 陈晓龙, 贾建刚, 李小龙, 龚静博, 郝相忠. 液相汽化TG-CVI法制备C/C复合材料的组织和性能[J]. 材料导报, 2020, 34(2): 2029-2033.
[5] 祝一锋, 黄小钢, 朱文仙, 张攀攀, 唐华东. 原位光催化聚合制备聚(N-乙烯基咔唑)/TiO2纳米复合材料及其光催化性能[J]. 材料导报, 2020, 34(2): 2147-2152.
[6] 任秦博,王景平,杨立,李翔,王学川. 用于电阻式柔性应变传感器的导电聚合物复合材料研究进展[J]. 材料导报, 2020, 34(1): 1080-1094.
[7] 齐云霞, 赵小伟, 杨永新, 黄冬维, 赵辉玲, 丁海生, 程广龙. TiO2基光电化学传感器电极结构调控的研究进展[J]. 材料导报, 2019, 33(Z2): 48-52.
[8] 郑孝源, 赵子龙, 任志英. 碳掺杂TiO2纳米管的制备和表征及在污水处理方面的应用[J]. 材料导报, 2019, 33(Z2): 113-115.
[9] 刘艳, 宫庆华, 周国伟. 不同形貌CeO2基纳米复合材料的制备及应用研究进展[J]. 材料导报, 2019, 33(Z2): 125-129.
[10] 张绪, 冯瑞, 张晔, 郭卫, 刘富. 民机复合材料帽型长桁压缩承载力分析与试验[J]. 材料导报, 2019, 33(Z2): 215-221.
[11] 王林, 王梦尧, 王佩勋, 卢京宇. 偶联剂改性玄武岩纤维增强水泥基复合材料力学性能[J]. 材料导报, 2019, 33(Z2): 273-277.
[12] 韩艳, 王龙龙, 刘志浩. CFRP板加固含I型裂纹混凝土的断裂扩展规律[J]. 材料导报, 2019, 33(Z2): 304-308.
[13] 倪嘉, 柴皓, 史昆, 赵军, 刘时兵, 刘鸿羽, 崔亚迪. 颗粒增强钛基复合材料的研究进展[J]. 材料导报, 2019, 33(Z2): 369-373.
[14] 杨立, 汪鹏生, 张浩, 王丰, 杨雄刚, 冯江涛, 华堃池, 胡永成. 生物活性玻璃骨材料力学性能及成骨作用改性的研究进展[J]. 材料导报, 2019, 33(Z2): 553-558.
[15] 姚进, 毛龙, 刘小超, 李知函. 利用分级结构层状黏土构建高阻隔性脂肪族聚酯复合材料[J]. 材料导报, 2019, 33(Z2): 617-622.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed