Please wait a minute...
材料导报  2022, Vol. 36 Issue (9): 21020136-5    https://doi.org/10.11896/cldb.21020136
  无机非金属及其复合材料 |
Ag/石墨烯复合薄膜的制备及其导热和电磁屏蔽性能研究
刘伟1,2, 贾琨2, 谷建宇2, 马晨2, 魏学红1,*
1 山西大学化学化工学院,太原 030006
2 中国电子科技集团公司第三十三研究所,电磁防护材料及技术山西省重点实验室,太原 030032
The Preparation of Ag/Graphene Composite Film for Thermal Conduction and Electromagnetic Interference Shielding
LIU Wei1,2, JIA Kun2, GU Jianyu2, MA Chen2, WEI Xuehong1,*
1 School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
2 Shanxi Key Laboratory of Electromagnetic Protection Materials and Technology, 33rd Institute of China Electronics Technology Group Corporation, Taiyuan 030032, China
下载:  全 文 ( PDF ) ( 3236KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着电子设备电磁干扰和散热问题日益严重,具有高导热和电磁屏蔽功能的复合材料受到广泛关注。以氧化石墨烯为原料,通过旋涂和高温热还原获得了石墨烯薄膜,并采用磁控溅射的方法在薄膜表面镀银,制备了Ag/石墨烯复合薄膜并分析了其结构形貌、导热性能、导电性能及电磁屏蔽性能。结果表明:Ag纳米颗粒均匀地负载到石墨烯薄膜的表面,当Ag纳米镀层的厚度为200 nm时,薄膜的方阻仅为0.02 Ω/sq,热导率可达872 W/(m·K),相比单一石墨烯薄膜,复合薄膜在30 MHz~18 GHz频率范围的屏蔽效能提高至37~60 dB。同时,Ag/石墨烯复合薄膜以180°弯曲角进行100次反复弯曲后,屏蔽效能仍可保留85%,展现了良好的机械柔韧性。这些优良性能证明了其在柔性电子设备的电磁兼容和散热领域拥有潜在的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘伟
贾琨
谷建宇
马晨
魏学红
关键词:  石墨烯  磁控溅射  电磁屏蔽  散热      
Abstract: High thermal conductive materials with excellent electromagnetic interference (EMI) shielding effectiveness (SE) are urgently desirable to eliminate electromagnetic pollution and improve heat-dissipation capacity in electronic devices. Graphene film was prepared by a facile spin-coating method followed by a high-temperature graphitization process. To obtain Ag/graphene composite film (AGCF), Ag nanoparticles were deposited on graphene film using a magnetron sputtering strategy. The structural morphology, thermal/electrical conductivity and EMI shielding performance of the films were characterized and analyzed. The results showed that the graphene film was uniformly decorated by Ag nanoparticles. When the thickness of Ag nano layer reached 200 nm, the square resistance and thermal conductivity of the film were 0.02 Ω/sq and 872 W/(m·K), respectively. Moreover, the EMI SE of AGCF was increased to 37—60 dB in the frequency of 30 MHz—18 GHz compared with bare graphene film. Meanwhile, the SE still remained 85% of initial value after 100 times of bending with a bending angle of 180°, indicating the excellent flexibility of AGCF. These superior properties make AGCF promising for the application in the field of electromagnetic compatibility and heat dissipation in flexible electronic equipment.
Key words:  graphene    magnetron sputtering    EMI shielding    thermal dissipation    silver
出版日期:  2022-05-10      发布日期:  2022-05-09
ZTFLH:  TB34  
基金资助: 山西省青年基金(201901D211576);国家自然科学基金(U1710115)
通讯作者:  wxhsxu@126.com   
作者简介:  刘伟,2017年6月毕业于中国科学院山西煤炭化学研究所,获得工程硕士学位。同年入职中国电子科技集团公司第三十三研究所工作至今。自2019年9月至今,以定向委培方式在山西大学攻读博士学位,主要从事碳基电磁防护材料的研究。
魏学红,教授。1993年毕业于中国科学院兰州化学物理研究所,获博士学位,同年加入山西大学化学化工学院工作至今。主要从事金属有机化学领域的研究。近年来在Angewandte Chemie International Edition、 Chemical Communications、 Organic Letters、 Chemsus Chem、 Macromolecules、 Organometallics、 Langmuir、 Dalton Transactions、 Journal of Materials Chemistry、 Journal of Organometallic Chemistry等杂志上发表论文100余篇,授权中国发明专利16项。
引用本文:    
刘伟, 贾琨, 谷建宇, 马晨, 魏学红. Ag/石墨烯复合薄膜的制备及其导热和电磁屏蔽性能研究[J]. 材料导报, 2022, 36(9): 21020136-5.
LIU Wei, JIA Kun, GU Jianyu, MA Chen, WEI Xuehong. The Preparation of Ag/Graphene Composite Film for Thermal Conduction and Electromagnetic Interference Shielding. Materials Reports, 2022, 36(9): 21020136-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21020136  或          http://www.mater-rep.com/CN/Y2022/V36/I9/21020136
1 Hansson J, Nilsson T, Ye L L, et al.International Materials Reviews, 2018, 63(1), 22.
2 Aza M A, Westwood A. Journal of Materials Science, Materials in Electronics, 2019, 30, 10630.
3 Cao M S, Cai Y Z, He P, et al.Chemical Engineering Journal, 2019, 359, 1265.
4 Wang C, Murugadoss V, Kong J, et al.Carbon, 2018, 140, 696.
5 Wan Y J, Zhu P L, Yu S H, et al. Small, 2018, 14, 1800534.
6 Xi J B, Li Y L, Zhou E Z, et al.Carbon, 2018, 135, 44.
7 Wan Y J, Zhu P L, Yu S H, et al.Carbon, 2017, 122, 74.
8 Zhang Z X, Qu J Y, Feng Y Y, et al. Composites Communications, 2018, 9, 33.
9 Peng L, Xu Z, Liu Z, et al.Advanced Materials, 2017, 29, 1700589.
10 Shen B, Zhai W T, Zheng W G.Advanced Functional Materials, 2014, 24(28), 4542.
11 Wang Y X, Huang L J, Tang J G, et al.The Chinese Journal of Nonferrous Metals, 2018, 28(3), 509(in Chinese).
王彦欣, 黄林军, 唐建国, 等. 中国有色金属学报,2018,28(3),509
12 Huang G, Wang H, Cheng P, et al. Microelectronic Engineering, 2016, 157, 7.
13 Hu Z R, Dai R, Wang D N, et al. New Carbon Materials, 2021, 36(2), 420.
14 Gong B L, Kinloch I A, Young R J, et al.Advanced Materials, 2010, 22(24), 2694.
15 Wang L, Qiu H, Liang C B, et al.Carbon, 2019, 141, 506.
16 Wang Z, Mao B Y, Wang Q L, et al.Small, 2018, 14(20), 1704332.
17 Li X H, Li X F, Liao K N, et al. ACS Applied Materials & Interfaces, 2016, 8, 33230.
18 Arjmand M, Mahmoodi M, Gelves G A, et al.Carbon, 2011, 49, 3430.
19 Bhattacharjee Y, Arief I, Bose S.Journal of Materials Chemistry C, 2017, 5, 7390.
20 Shen B, Li Y, Zhai W T, et al. ACS Applied Materials & Interfaces, 2016, 8, 8050.
[1] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[2] 李格, 韩彬, 李美艳, 刘鹏, 李朝晖. 石墨烯增强金属基复合涂层的研究进展[J]. 材料导报, 2022, 36(8): 20080127-7.
[3] 杨福生, 王百祥, 张妍, 任永忠, 陈永哲, 杨武. 纳米银协同沙子构筑超疏水表面及其性能研究[J]. 材料导报, 2022, 36(6): 21010001-5.
[4] 李彤, 赵卓, 武俊生, 方方, 周艳文. 粉末靶磁控溅射ZnO/Cu/ZnO的制备及表征[J]. 材料导报, 2022, 36(6): 20120259-4.
[5] 王付胜, 王汉森, 何鹏, 胡隆伟, 陈亚军. 磁控溅射和电镀方法制备纯银镀层耐蚀性能分析[J]. 材料导报, 2022, 36(6): 20120254-6.
[6] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[7] 姚庆达, 梁永贤, 王小卓, 温会涛, 周华龙, 但卫华. GO/CS的结构、性能及其在水处理中的应用研究进展[J]. 材料导报, 2022, 36(4): 20110041-13.
[8] 蔡中盼, 田茂诚, 张冠敏. 不同层数和尺寸的石墨烯对润滑油热物性能的影响[J]. 材料导报, 2022, 36(3): 20100213-8.
[9] 谭洁慧, 邓凌峰, 张淑娴, 李金磊, 王壮, 覃榕荣. 利用微量碳纳米管与石墨烯协同包覆提高LiCoO2正极材料的性能[J]. 材料导报, 2022, 36(2): 20100058-6.
[10] 王伟, 孙文磊, 张志虎, 于江通, 黄海博, 王杨宵, 肖奇. 激光二次扫描熔覆涂层组织演变规律及数值模拟研究[J]. 材料导报, 2022, 36(2): 20090204-7.
[11] 赵子君, 王旭. Ag15Cu85二元合金高温氧化行为对去合金机制的影响[J]. 材料导报, 2022, 36(2): 20110140-6.
[12] 邵丹, 王美玲, 陈志炎, 高亚军, 庞欢. 碳材料在色素电化学传感中的研究进展[J]. 材料导报, 2021, 35(z2): 22-27.
[13] 董宏伟, 张冠星, 董显, 薛行雁, 沈元勋. 纳米银焊膏的研究进展[J]. 材料导报, 2021, 35(z2): 341-345.
[14] 唐卫岗, 胡岭, 黄世盛, 陈融, 郭冰, 沈杭燕. 高能球磨法制备微米银片的工艺研究[J]. 材料导报, 2021, 35(z2): 428-432.
[15] 蒋星宇, 王洁琼, 邱琳琳, 白冰, 金正飞, 梅德强, 杜平凡. 碳基纤维材料在能源领域的应用[J]. 材料导报, 2021, 35(z2): 470-478.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed