Please wait a minute...
材料导报  2020, Vol. 34 Issue (8): 8010-8013    https://doi.org/10.11896/cldb.19010202
  无机非金属及其复合材料 |
晶粒取向及氧化电压对阳极氧化Ta2O5纳米管形貌的影响
张玉1, 刘施峰1, 李利娟1, 祝佳林1, 邓超1,2
1 重庆大学材料科学与工程学院,重庆 400044;
2 重庆大学电子显微镜中心,重庆 400044
Effects of Grain Orientation and Oxidation Voltage on Morphology of Anodized Ta2O5 Nanotubes
ZHANG Yu1, LIU Shifeng1, LI Lijuan1, ZHU Jialin1, DENG Chao1,2
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China;
2 Electron Microscopy Center of Chongqing University, Chongqing 400044, China
下载:  全 文 ( PDF ) ( 6207KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 以(110)和(111)取向单晶钽片为原材料,在体积比为9∶1的浓H2SO4和HF电解液中,保持电压为30 V,阳极氧化1 min制备Ta2O5纳米管。对比在(110)和(111)取向单晶上制备的Ta2O5纳米管的扫描电子显微镜(SEM)图像,研究晶粒取向对阳极氧化Ta2O5纳米管形貌的影响。在相同电解液体系下,将两种不同取向单晶分别在电压为5 V、15 V、25 V、35 V的条件下氧化30 s,研究氧化电压对Ta2O5纳米管形貌的影响。研究结果表明:(111)取向更有利于Ta2O5纳米管的生长,其管长约为6.28 μm,Ta2O5纳米管的顶部抱团成簇,纳米管外部粗糙似竹节;(110)取向制备的Ta2O5纳米管开口好,外管壁光滑,管长约为3.71 μm;Ta2O5纳米管的管长及管径与氧化电压呈正相关,且(111)单晶生长的Ta2O5纳米管管长及管径大于(110)单晶生长的纳米管。Ta2O5纳米管的生长具有取向相关性,主要受原子排列密度的影响,原子排列密度越大,其纳米管的生长速率越小,故Ta2O5纳米管管长越短,管径越小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张玉
刘施峰
李利娟
祝佳林
邓超
关键词:  单晶钽片  阳极氧化  晶粒取向  氧化电压  Ta2O5纳米管    
Abstract: Ta2O5 nanotubes were prepared by single crystals with different orientation, including (110) and (111), anodizing at constant voltage 30 V for 1 min in a concentrated H2SO4/HF solution with a volume ratio of 9∶1. The effect of grain orientations on the morphology of anodized Ta2O5 nanotubes was investigated by comparing the SEM images of Ta2O5 nanotubes grown on single crystals with different grain orientation. At the same electrolyte system, the effect of oxidation potentials on the morphology of Ta2O5 nanotubes was investigated by oxidizing for 30 s under the voltage of 5 V, 15 V, 25 V, and 35 V, respectively. The results showed that the (111) orientation was more favorable for the growth of Ta2O5 nanotubes, which led to a structure with 6.28 μm in thickness with the clustered Ta2O5 nanotubes at top and a rough outside wall, similar to bamboo, however the Ta2O5 nanotubes prepared by (110) orientation had good openings and smooth outer wall, and the tube length was about 3.71 μm. The study also found that the tube length and diameter of Ta2O5 nanotubes are positively correlated with the oxidation voltage, moreover the length and diameter of Ta2O5 nanotubes grown by (111) single crystals were better than those of (110) single crystals. Growth rate of Ta2O5 nanotubes was related to grain orientation. The difference in the length and diameter of Ta2O5 nanotubes prepared by different orientation single crystals was mainly due to the atomic planar density, the higher the atomic planar density, the smaller the growth rate of the nanotubes and the shorter the Ta2O5 nanotubes length, the smaller the Ta2O5 nanotubes diameter.
Key words:  single crystal tantalum sheet    anodization    grain orientation    anodizing voltage    Ta2O5 nanotubes
               出版日期:  2020-04-25      发布日期:  2020-04-25
ZTFLH:  TB34  
基金资助: 重庆市基础科学与前沿技术研究项目(cstc2017jcyjAX0094);科技部国家重大专项项目(2011ZX02705)
通讯作者:  liusf06@cqu.edu.cn   
作者简介:  张玉,重庆大学材料科学与工程学院在读硕士,主要研究方向为阳极氧化制备Ta2O5纳米管及Ta2O5纳米管在退火过程的热行为。
刘施峰,重庆大学材料科学与工程学院副教授,博士研究生导师。2009年博士研究生毕业于中科院上海硅酸盐研究所,在国内外学术期刊上发表论文50余篇,其团队主要研究方向包括:集成电路制造用溅射靶材微观组织及织构优化;六方结构金属及合金的形变机理及织构;先进材料制备及加工技术。近年来主持了多项国家及省部级项目。
引用本文:    
张玉, 刘施峰, 李利娟, 祝佳林, 邓超. 晶粒取向及氧化电压对阳极氧化Ta2O5纳米管形貌的影响[J]. 材料导报, 2020, 34(8): 8010-8013.
ZHANG Yu, LIU Shifeng, LI Lijuan, ZHU Jialin, DENG Chao. Effects of Grain Orientation and Oxidation Voltage on Morphology of Anodized Ta2O5 Nanotubes. Materials Reports, 2020, 34(8): 8010-8013.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010202  或          http://www.mater-rep.com/CN/Y2020/V34/I8/8010
1 Mor G K, Shankar K, Paulose M, et al. Nano Letters, 2006, 6(2), 215.
2 Gonçalves R V, Wojcieszak R, Uberman P M, et al. Catalysis Communications, 2014, 48(48), 50.
3 Cong Y, Park H S, Wang S, et al. Journal of Physical Chemistry C, 2012, 116(27), 14541.
4 Chen W, Tu Q, Wu H, et al. Electrochimica Acta, 2017, 236, 140.
5 Momeni M M, Mirhosseini M, Chavoshi M, et al. Journal of Materials Science: Materials in Electronics, 2015, 27(4), 3941.
6 Allam N K, Feng X J, Grimes C A. Chemistry of Materials, 2012, 20(20), 6477.
7 Elsayed H A, Birss V I. Nano Letters, 2009, 9(4), 1350.
8 Xin R, Li B, Li L, et al. Materials & Design, 2011, 32(8), 4548.
9 Hamu G B, Eliezer D, Wagner L. Journal of Alloys & Compounds, 2009, 468(1), 222.
10 Song G L, Xu Z. Corrosion Science, 2012, 54(1), 97.
11 Diamanti M V, Pedeferri M P, Schuh C A. Metallurgical & Materials Transactions A, 2008, 39(9), 2143.
12 Davepon B, Schultze J W, König U, et al. Surface & Coatings Technology, 2003, 169(3), 85.
13 Crawford G A, Chawla N. Scripta Materialia, 2009, 60(10), 874.
14 Macak J M, Jarosova M, Jäger A, et al. Applied Surface Science, 2016, 371, 607.
15 Leonardi S, Russo V, Bassi A L, et al. ACS Applied Materials & Interfaces, 2015, 7(3), 1662.
16 König U, Davepon B. Electrochimica Acta, 2001, 47(1), 149.
17 Macak J M, Sirotna K, Schmuki P. Electrochimica Acta, 2005, 50(18), 3679.
18 Costa J D, Quitério P, Apolinário A, et al. Materials Letters, 2016, 171, 224.
19 Fan H Y, Liu S F, Guo Y, et al. Applied Surface Science, 2015, 339, 15.
[1] 商富强, 黄丽清, 李刚, 张宇, 蔡亚坤, 王慧敏, 董伟丽, 张磊, 刘悠. 超亲水和具有不同黏性的超疏水阳极氧化铝膜的制备[J]. 材料导报, 2020, 34(10): 10003-10007.
[2] 程亮, 赵子龙. 用Ti板制备高比表面积TiO2纳米管的响应面实验设计[J]. 材料导报, 2019, 33(Z2): 365-368.
[3] 鲁亚稳, 常胜男, 刘元军, 刘皓, 赵晓明, 李晓久. 基于AAO模板的高聚物纳米阵列薄膜的研究进展[J]. 材料导报, 2019, 33(23): 3990-3998.
[4] 何承绪, 杨富尧, 孟利, 刘洋, 高洁, 马光, 韩钰, 陈新. 薄规格取向硅钢中晶粒取向和尺寸对Goss晶粒异常长大的影响[J]. 《材料导报》期刊社, 2018, 32(4): 606-610.
[5] 刘兆文, 李毅波, 黄明辉, 汪必升, 李剑. 阳极氧化处理增强Al-Li合金胶接板剪切强度的机理[J]. 材料导报, 2018, 32(18): 3181-3184.
[6] 郭廷彪,李 琦,王 晨,张 锋, 丁雨田,贾 智,唐兴昌. 低温等通道转角挤压中定向凝固纯铜的组织及性能演变[J]. 《材料导报》期刊社, 2018, 32(10): 1650-1654.
[7] 陈晓萍, 马俊, 李宝华, 康飞宇. 三维结构磷酸铁锂纳米线阵列的制备及其电化学性能[J]. 《材料导报》期刊社, 2017, 31(4): 1-4.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed