Please wait a minute...
材料导报  2023, Vol. 37 Issue (6): 21070249-7    https://doi.org/10.11896/cldb.21070249
  高分子与聚合物基复合材料 |
转化方式对粉煤灰地聚物原位转化沸石及其Pb2+吸附性能的影响
宋学锋*, 陆伟宁
西安建筑科技大学材料科学与工程学院,西安 710055
Influence of Conversion Method on In-situ Conversion of Fly Ash Geopolymer to Zeolite and Its Pb2+ Adsorption Performance
SONG Xuefeng*, LU Weining
School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 8408KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作以高铝粉煤灰为前驱体,通过碱激发及化学发泡的方式制备了富含类沸石相的多孔粉煤灰地聚物,并以此地聚物为骨架,通过原位转化将类沸石相转化为沸石,得到自支撑类沸石吸附材料。另外,研究了碱热、水热、微波三种原位转化方式下多孔粉煤灰地聚物的矿物组成变化规律、不同原位转化条件下制备的沸石类吸附材料对Pb2+的静态吸附行为。研究结果表明:碱热转化有利于多孔粉煤灰地聚物中的类沸石相原位转化生成沸石相,明显提高了其对Pb2+的吸附容量。碱热转化多孔粉煤灰地聚物对Pb2+的吸附属于単分子层吸附。吸附动力学拟合表明,碱热转化多孔粉煤灰地聚物对Pb2+的吸附方式分为物理吸附和化学吸附。当Pb2+初始浓度为100 mg/L和300 mg/L时,吸附过程以物理吸附为主;当Pb2+初始浓度为500 mg/L时,吸附过程伴随大量化学键形成,化学吸附作用更强。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋学锋
陆伟宁
关键词:  多孔地聚物  原位转化  沸石  铅离子吸附    
Abstract: Using high-alumina fly ash as the precursor, the porous fly ash geopolymer rich in zeolitephase was prepared by alkali excitation and chemical foaming. With the geopolymer as the framework, the zeolite-like phase was transformed into zeolite through in-situ transformation to form a self-supporting zeolite-like adsorption material. In addition, this work explores the regulation of the mineral composition of porous fly ash geopolymer under three in-situ conversion modes, alkali-thermal conversion, hydrothermal conversion, and microwave conversion; the static adsorption behavior of zeolite-based adsorbents prepared under different in-situ conversion conditions on Pb2+ was also studied. The results show that the alkali-heat conversion is beneficial to the in-situ conversion of the zeolite-like phase to the zeolite phase in the porous fly ash geopolymer, which significantly increases the adsorption capacity for Pb2+. The adsorption of Pb2+ by the alkali-thermal conversion porous fly ash geopolymer belongs to the single molecular layer adsorption. The adsorption kinetics fitting results show that the adsorption of Pb2+ by the alkali-thermal conversion porous fly ash geopolymer can be divided into physical adsorption and chemical adsorption. When the initial concentration of Pb2+ is 100 mg/L and 300 mg/L, the adsorption process is dominated by physical adsorption; when the initial concentration of Pb2+ is 500 mg/L, the adsorption process is accompanied by the formation of a large number of chemical bonds, and the chemical adsorption effect is stronger.
Key words:  porous geological polymer    in-situ conversion    zeolite    lead ion adsorption
发布日期:  2023-03-27
ZTFLH:  TB321  
基金资助: 陕西省科研攻关项目(2018SF-367)
通讯作者:  *宋学锋,西安建筑科技大学教授。2008年毕业于陕西师范大学,获得应用化学博士学位,2013年9月至2014年9月以高级访问学者在华盛顿州立大学学习交流一年。主要研究方向为高强高性能混凝土及其耐久性、固体废弃物资源化利用以及建筑功能材料制备理论与技术,发表论文80余篇,其中SCI、EI论文30余篇。songxuefeng@xauat.edu.cn   
引用本文:    
宋学锋, 陆伟宁. 转化方式对粉煤灰地聚物原位转化沸石及其Pb2+吸附性能的影响[J]. 材料导报, 2023, 37(6): 21070249-7.
SONG Xuefeng, LU Weining. Influence of Conversion Method on In-situ Conversion of Fly Ash Geopolymer to Zeolite and Its Pb2+ Adsorption Performance. Materials Reports, 2023, 37(6): 21070249-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070249  或          http://www.mater-rep.com/CN/Y2023/V37/I6/21070249
1 Li J L, Zhou S K, Rong L S, et al. Fine Chemicals, 2020, 37(7), 1343 (in Chinese).
李嘉丽, 周书葵, 荣丽杉, 等. 精细化工, 2020, 37(7), 1343.
2 Xue G H. Study on the controllable preparayion of slag-based geopolymer microspheres and adsorption performance of Pb (Ⅱ). Master's Thesis, Guangxi University, China, 2020 (in Chinese).
薛国辉. 矿渣基地质聚合物微球的可控制备及对Pb(Ⅱ)吸附性能研究. 硕士学位论文, 广西大学, 2020.
3 Liu Y, Yan C J, Zhang Z H, et al. Fuel, 2016, 185, 181.
4 Zhu Y C, Zhang Z H, Liu Y, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(8), 2458 (in Chinese).
朱颖灿, 张祖华, 刘意, 等. 硅酸盐通报, 2020, 39(8), 2458.
5 Tang Q, Cui X M, He Y, et al. Advanced Ceramics, 2016, 37(4), 253 (in Chinese).
唐青, 崔学民, 贺艳, 等. 现代技术陶瓷, 2016, 37(4), 253.
6 Wang Y H, Chen J Y, Lei X R, et al. Acta Petrologica et Mineralogica, 2016, 35(6), 1068 (in Chinese).
王源慧, 陈洁渝, 雷新荣, 等. 岩石矿物学杂志, 2016, 35(6), 1068.
7 Lee N K, Khalid H R. Microporous Mesoporous Mater, 2017, 242, 238.
8 Jiang F, Lei T, Li S J, et al. Materials Reports, 2019, 33(S2), 526 (in Chinese).
蒋芳, 雷婷, 李声剑, 等. 材料导报, 2019, 33(S2), 526.
9 Tan T H, Mo K H, Ling T C, et al. Environmental Technology & Innovation, 2020, 18, 100684.
10 Zhang Y J, Zhang Y, Han Z C, et al. Materials Reports A: Review Papers, 2020, 34(12), 23033 (in Chinese).
张耀君, 张叶, 韩智超, 等. 材料导报:综述篇, 2020, 34(12), 23033.
11 Chou X M, Liu Y D, Yan C J, et al. Journal of Synthetic Crystals, 2018, 47(2), 411 (in Chinese).
仇秀梅, 刘亚东, 严春杰, 等. 人工晶体学报, 2018, 47(2), 411.
12 Simão L, De Rossi A, Hotza D, et al. Journal of the American Ceramic Society, 2020, 104(2), 803.
13 Visa M. Powder Technology, 2016, 294, 338.
14 Medina T J, Arredondo S P, Corral R, et al. Minerals, 2020, 10(808), 1.
15 Javadian H, Ghorbani F, Tayebi H A, et al. Arabian Journal of Chemistry, 2015, 8(6), 837.
16 Bukhari S S, Behin J, Kazemian H, et al. Fuel, 2015, 140, 250.
17 Chen H, Zhang Y J, He P Y, et al. Energy, 2019, 179, 422.
18 Zeng S J. Green synthesis of zeolites and hierarchically porous materials. Ph.D. Thesis, Jilin University, China, 2016 (in Chinese).
曾尚景. 绿色合成沸石分子筛及多级孔材料. 博士学位论文, 吉林大学, 2016.
19 Azzolina J, Federico P, Isabelle E, et al. Microporous and Mesoporous Materials, 2014, 198, 22.
20 Kumadani K, Takamatsu Y, Minami T, et al. Journal of the Ceramic Society of Japan, 2019, 127(8), 585.
21 Ding H. Preparation of self-supporting fly ash-based porous adsorption material and its denitrification and dephosphorization effect. Master's Thesis, Xi'an University of Architecture &Technology, China, 2021 (in Chinese).
丁浩. 自支撑粉煤灰基多孔吸附材料的制备及其脱氮除磷效果. 硕士学位论文, 西安建筑科技大学, 2021.
22 Luo Z Y. Detection of lead in wastewater and study on its electrodeposition behavior. Master's Thesis, Chongqing University, China, 2009 (in Chinese).
罗志勇. 废水中铅的检测及电沉积行为研究. 硕士学位论文, 重庆大学, 2009.
23 Liu C L, Ma S H, Ding J, et al. Transactions of Nonferrous Metals Society of China, 2019, 29(4), 868.
24 Wang H, Zhang Q, Song C Y. Fly Ash Comprehensive Utilization, 2001(5), 24 (in Chinese).
王华, 张强, 宋存义. 粉煤灰综合利用, 2001(5), 24.
25 Wang J X, Li L, Liu Z, et al. Bulletin of the Chinese Ceramic Society, 2019, 38(7), 1977 (in Chinese).
王吉祥, 李丽, 刘泽, 等. 硅酸盐通报, 2019, 38(7), 1977.
26 Chou X M, Liu Y D, Yan C J, et al. Acta Petrologica et Mineralogica, 2018, 37(4), 669 (in Chinese).
仇秀梅, 刘亚东, 严春杰, 等. 岩石矿物学杂志, 2018, 37(4), 669.
27 Cao L Q, Zhang L H, Fang L, et al. Bulletin of the Chinese Ceramic Society, 2019, 38(7), 2213 (in Chinese).
曹丽琼, 张丽宏, 方莉, 等. 硅酸盐通报, 2019, 38(7), 2213.
28 Kim K J, Ahn H G. Microporous Mesoporous Mater, 2012, 152, 78.
29 He K. Study on the removal of heavy metal ions from aqueous solution by zeolite NaA synthesized from fly ash. Master's Thesis, South China University of Technology, China, 2016 (in Chinese).
贺框. 粉煤灰制备NaA型沸石分子筛及其对重金属离子吸附的研究. 硕士学位论文, 华南理工大学, 2016.
30 Qiu J, Zhao Y, Xing J, et al. Desalination and Water Treatment, 2017, 70, 201.
31 Ding P, Song W, Wang C, et al. Desalination and Water Treatment, 2019, 158, 164.
32 Najafi E K, Chenari R J, Arabani M. Environmental Engineering Science, 2021, 38, 729.
33 Wang Y, Han F, Mu J. Construction and Building Materials, 2018, 160, 818.
[1] 汤倩茜, 陈栋航, 张春杰, 王钢, 郭利民. 沸石分子筛用于挥发性有机物吸附的研究进展[J]. 材料导报, 2022, 36(Z1): 21050144-9.
[2] 宋学锋, 丁浩. LaCl3@Zeolite自支撑多孔吸附材料的制备及其同步脱氮除磷效果[J]. 材料导报, 2022, 36(14): 21040103-7.
[3] 熊浩林, 韩秀梅, 张晓燕. 分子筛催化剂的发展与展望[J]. 材料导报, 2021, 35(Z1): 137-142.
[4] 孙红娟, 曾丽, 彭同江. 粉煤灰高值化利用研究现状与进展[J]. 材料导报, 2021, 35(3): 3010-3015.
[5] 苏博文, 史公初, 廖亚龙, 张宇, 王伟, 郗家俊. 工业固体废弃物制备二氧化硅功能材料的研究进展[J]. 材料导报, 2021, 35(3): 3026-3032.
[6] 张耀君, 张叶, 韩智超, 贺攀阳, 陈浩. 地质聚合物原位转化沸石分子筛的研究进展[J]. 材料导报, 2020, 34(23): 23033-23041.
[7] 匡敬忠, 黄哲誉, 马强, 刘鹏飞, 郭传州. 偏高岭石碱溶合成方钠石相变过程及吸附特性[J]. 材料导报, 2018, 32(22): 3853-3861.
[8] 王 茹,张绍康,王高勇. 矿物外加剂对丁苯聚合物/水泥复合胶凝材料凝结硬化过程的影响及机制[J]. 《材料导报》期刊社, 2017, 31(24): 69-73.
[9] 赵博,纪妍妍,张兵,王冬梅,张纪梅. 湿凝胶晶化法高效合成X型沸石及其离子交换性能研究*[J]. 材料导报编辑部, 2017, 31(10): 47-50.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed