Please wait a minute...
材料导报  2023, Vol. 37 Issue (6): 21080088-6    https://doi.org/10.11896/cldb.21080088
  高分子与聚合物基复合材料 |
ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究
王嘉乐1, 左雨欣2, 王越锋1, 陈洪立1, 刘宜胜1, 胡雨倞3, 于影3,*, 左春柽3,*
1 浙江理工大学机械与自动控制学院,杭州 310018
2 嘉兴南湖学院时尚设计学院,浙江 嘉兴 314000
3 嘉兴学院信息科学与工程学院,浙江 嘉兴 314000
Study on the Preparation, Mechanical Properties and Application in Aluminum-Air Battery of ZnO@PAN Anti-corrosion Film
WANG Jiale1, ZUO Yuxin2, WANG Yuefeng1, CHEN Hongli1, LIU Yisheng1, HU Yuliang3, YU Ying3,*,
ZUO Chuncheng3,*
1 Faculty of Mechanical Engineering & Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China
2 College of Fashion Design, Jiaxing Nanhu University, Jiaxing 314000, Zhejiang, China
3 College of Information Science and Engineering, Jiaxing University, Jiaxing 314000,Zhejiang, China
下载:  全 文 ( PDF ) ( 7232KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对金属空气电池阳极自腐蚀问题,采用静电纺丝方法制备了ZnO@PAN抗腐蚀薄膜。该薄膜能够有效抑制碱性电解质条件下金属空气电池的阳极自腐蚀,腐蚀抑制率高达85.7%。同时,该薄膜兼具良好的力学特性,可适用于柔性能源器件。电化学和力学测试结果表明,ZnO@PAN抗腐蚀薄膜在疲劳拉伸后依然具备良好的腐蚀抑制性。随ZnO@PAN抗腐蚀薄膜中PAN含量的增加,其腐蚀抑制性减弱,但力学拉伸性能增强。将抗腐蚀薄膜应用于柔性金属空气电池时,需综合考虑应用场景,选用合适PAN含量的抗腐蚀薄膜。本实验所制备的ZnO@PAN抗腐蚀薄膜能够为金属电极提供有效保护,且具有优良的力学性能,在柔性可穿戴电子产品领域具有广阔的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王嘉乐
左雨欣
王越锋
陈洪立
刘宜胜
胡雨倞
于影
左春柽
关键词:  ZnO@PAN抗腐蚀薄膜  力学性能  柔性金属空气电池  静电纺丝    
Abstract: Aiming at the self-corrosion problem of the metal-air battery anode, the ZnO@PAN anti-corrosion film was prepared by electrospinning. The film can effectively inhibit the anode self-corrosion of metal-air batteries with alkaline electrolyte, and the corrosion inhibition rate is as high as 85.7%. At the same time, the film has good mechanical properties and could be applied to flexible energy devices. The electrochemical and mechanical tests show that the ZnO@PAN anti-corrosion film still has excellent corrosion inhibition after fatigue bending. With the increase of PAN content in the ZnO@PAN anti-corrosion film,the corrosion inhibition was weakened, but its mechanical tensile properties were enhanced. In order to apply the anti-corrosion film to the flexible metal-air battery, it is necessary to consider the application scenarios and select the anti-corrosion film with the appropriate proportion of PAN content comprehensively. The ZnO@PAN anti-corrosion film prepared in this experiment can provide effective protection for metal electrodes, and has excellent mechanical properties, which has broad application prospects in the field of flexible wearable electronic products.
Key words:  ZnO@PAN anti-corrosion film    mechanical property    flexible metal-air battery    electrospinning
发布日期:  2023-03-27
ZTFLH:  TG178  
基金资助: 国家自然科学基金(11802102;51775242);浙江省自然科学基金(LGG21E050021;LQ20E040007);嘉兴市应用性基础研究专项(2019AY11019;2020AY10015)
通讯作者:  *于影,嘉兴学院信息科学与工程学院副教授、硕士研究生导师。2011年6月获得吉林大学工学学士学位,2016年6月获得工学博士学位(硕博连读)。目前主要从事电流体动力学、增材制造、可穿戴电子器件的研究工作。以第一或通信作者发表SCI论文10余篇,出版个人专著1部。主持国家自然科学基金项目1项。yingyu@zjxu.edu.cn;zuocc@mail.zjxu.edu.cn   
作者简介:  王嘉乐,2019年6月毕业于浙江理工大学机械与自动控制学院,获得工学学士学位。现为浙江理工大学机械与自动控制学院与嘉兴学院信息科学与工程学院联合培养硕士研究生,在左春柽教授和于影副教授的指导下进行研究。目前主要研究领域为复合材料薄膜的制备。
引用本文:    
王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
WANG Jiale, ZUO Yuxin, WANG Yuefeng, CHEN Hongli, LIU Yisheng, HU Yuliang, YU Ying,
ZUO Chuncheng. Study on the Preparation, Mechanical Properties and Application in Aluminum-Air Battery of ZnO@PAN Anti-corrosion Film. Materials Reports, 2023, 37(6): 21080088-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080088  或          http://www.mater-rep.com/CN/Y2023/V37/I6/21080088
1 Song W J, Lee S, Song G, et al. Energy Storage Materials, 2020, 30, 260.
2 Hou R, Gund G S, Qi K, et al. Energy Storage Materials, 2019, 19, 212.
3 Tong X, Tian Z, Sun J, et al. Materials Today, 2021, 44, 78.
4 Ye L, Hong Y, Liao M, et al. Energy Storage Materials, 2020, 28, 364.
5 Zhang Y, Deng Y P, Wang J, et al. Energy Storage Materials, 2021, 35, 538.
6 Xu X Y, Liu J H, Ouyang X, et al. Electrochimica Acta, 2020, 334, 135551.
7 Zhang Y, Lu R, Zhang S, et al. Chemical Engineering Journal, 2021, 423, 130260.
8 Mao J, Zhao C, Liu L, et al. Composites Communications, 2021, 25, 100733.
9 Liu M Y, Hang C Z, Zhao X F, et al. Nano Energy, 2021, 87, 106181.
10 Aziz T, Sun Y, Wu Z H, et al. Journal of Materials Science & Technology, 2021, 86, 151.
11 Vijatovic Petrovic M, Cordero F, Mercadelli E, et al. Journal of Alloys and Compounds, 2021, 884, 161071.
12 Chen K, Ren J, Chen C, et al. Nano Today, 2020, 35, 100939.
13 Haryńska A, Carayon I, Kosmela P, et al. European Polymer Journal, 2020, 138, 109958.
14 Mohanta J, Kang D W, Cho J S, et al. Energy Storage Materials, 2020, 28, 315.
15 Yang D, Yao Q, Jia M, et al. Energy and Built Environment, 2021, 2(2), 157.
16 Goel P, Dobhal D, Sharma R C. Journal of Energy Storage, 2020, 28, 101287.
17 Ryu J, Park M, Cho J. Advanced Materials, 2019, 31(20), e1804784.
18 Fang W, Zhao J, Zhang W, et al. Journal of Alloys and Compounds, 2021, 869, 158918.
19 Iqbal M A, Asghar H, Fedel M. Journal of Alloys and Compounds, 2020, 844, 156112.
20 Farid R, Rajan K, Sarkar D K. Surface and Coatings Technology, 2019, 374, 355.
21 Fan J F, Liu G, Zhuo X S, et al. Ceramics International, 2021, 47(16), 22404.
22 Arunnellaiappan T, Ashfaq M, Krishna L R, et al. Ceramics International, 2016, 42(5), 5897.
23 Velayi E, Norouzbeigi R. Ceramics International, 2019, 45(14), 16864.
24 Kim Y J, Ryu K S. Applied Surface Science, 2019, 480, 912.
25 Rajitha K, Mohana K N S, Hegde M B, et al. FlatChem, 2020, 24, 100208.
26 Zhou S, Wu Y, Zhao W, et al. Materials & Design, 2019, 169, 107694.
27 Wang J L, Wang Y F, Zuo Y X, et al. Surface Technology, 2021, 50(12), 364. (in Chinese).
王嘉乐, 王越锋, 左雨欣, 等. 表面技术, 2021, 50(12), 364.
28 Yu Y, Zuo Y X, Zhang Z H, et al. Coatings, 2019, 9(11), 692.
29 Wang Y F, Yu Y, Wang J L, et al. Advanced Materials Interfaces, 2021, 8, 2100786.
30 Zhang M, Sheng J L, Yin X, et al. Macromolecular Materials and Engineering, 2017, 302, 1600272.
31 Li R X. Effect of bending on the resistive switching of flexible ZnO-based thin films. Master's Thesis, Northeastern University, China, 2017 (in Chinese).
李润霞. 弯折对ZnO基柔性薄膜阻变特性的影响研究. 硕士学位论文, 东北大学, 2017.
32 Ge Y L, Shang Y Y. Journal of Synthetic Crystals, 2019, 48(6), 1139. (in Chinese)
葛亚丽, 上媛媛. 人工晶体学报, 2019, 48(6), 1139.
33 Flores-Carrasco G, Carrillo-López J, Luna-López J A, et al. Advances in Materials Science and Engineering, 2014, 2014, 1.
34 Wang Y, Li W, Zhou Y, et al. Journal of Materials Science, 2020, 55(8), 12592.
35 Jony H E, Sun M S, Min S K, et al. Materials & Design, 2021, 206, 109785.
36 Raisch M, Genovese D, Zaccheroni N, et al. Advanced Materials, 2018, 30, 1802813.
37 Shao Y M, Tao Y, Ting Z, et al. Advanced Materials Technologies, 2018, 3(7), 1800033.
38 Zhu H, Yue L, Zhuang C, et al. Surface and Coatings Technology, 2016, 304, 76.
39 Liu J, Wang D, Zhang D, et al. Journal of Power Sources, 2016, 335, 1.
[1] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[2] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[3] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[4] 江志威, 刘呈坤, 吴红, 毛雪. 静电纺柔性超级电容器电极材料的研究进展[J]. 材料导报, 2023, 37(5): 21040283-13.
[5] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
[6] 关虓, 陈霁溪, 朱梦宇, 高洁, 丁莎. 微波活化煤矸石对水泥基材料的性能影响[J]. 材料导报, 2023, 37(4): 21050134-7.
[7] 李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
[8] 郝思洁, 褚强, 李文亚, 杨夏炜, 邹阳帆. 电脉冲处理对金属材料组织、力学性能影响的研究进展[J]. 材料导报, 2023, 37(4): 21030039-9.
[9] 王彦明, 高晓红, 李萍, 王廷梅, 王齐华. 原子氧辐照对含苯并咪唑结构聚酰亚胺摩擦学性能影响研究[J]. 材料导报, 2023, 37(4): 21040187-7.
[10] 罗翔, 米振莉, 吴彦欣, 杨永刚, 江海涛, 胡宽辉. 退火温度对LH800空冷强化钢组织与力学性能的影响[J]. 材料导报, 2023, 37(3): 21080047-6.
[11] 吴远东, 郑维爽, 李源遽, 都贝宁, 张兴儒, 李家龙, 于盛洋, 肖忆楠, 赖琛, 盛立远, 黄艺. 聚羟基脂肪酸酯(PHAs)基止血材料研究进展[J]. 材料导报, 2023, 37(3): 21010218-9.
[12] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[13] 邱玺, 高士鑫, 李权, 李垣明, 李文杰, 辛勇. 热管反应堆用钼铼合金的研究进展[J]. 材料导报, 2023, 37(2): 21020011-9.
[14] 杨东辉, 唐帅, 吴子彬, 秦克, 张海涛, 崔建忠, Hiromi Nagaumi. 高锌铝合金合金化和加工工艺的研究现状及发展趋势[J]. 材料导报, 2023, 37(2): 21010126-6.
[15] 杨正宏, 刘思佳, 吴凯, 于龙, 潘峰. 纤维增强磷酸镁水泥基复合材料研究进展[J]. 材料导报, 2023, 37(1): 20110150-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed