Effect of Molecular Weight of Polyacrylonitrile on Specific Capacity and Cycle Performance of Lithium-Sulfur Battery
WEI Shijun1, HE Runhe1, LI Yongbing1, JIN Yanmei1, ZHANG Xingxiang1,2,*
1 School of Material Science and Engineering, Tiangong University, Tianjin 300387, China 2 Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage Technology, Tianjin 300387, China
Abstract: Free radical polymerization of acrylonitrile (AN) in the mixed solvent of water (H2O) and dimethyl sulfoxide (DMSO) with different mass ra-tios is used to fabricate polyacrylonitrile with various molecular weights (VMPAN). Furthermore, sulfurized polyacrylonitrile (SPAN) was fabricated using sublimated sulfur as the sulfur source. The influence of various H2O and DMSO ratios on the chemical and physical properties of VMPAN and the electrochemical performance of SPAN as the positive electrode of lithium-sulfur battery were investigated. The results show that the PAN with a mixed reagent ratio of 50:50 has a moderate molecular weight, and its derived SPAN composite material exhibits the best performance. The sulfur loading and the lithium-ion diffusion coefficient were nearly 52wt% and 1.06×10-12 cm2·s-1, respectively. The initial discharge specific capacities of SPAN cathode material at 0.2C and 1.0C were 1 805.48 mAh·g-1 and 1 704.22 mAh·g-1, respectively. After 100 cycles at 0.2C, the reversible specific capacity was 1 225 mAh·g-1. Meanwhile, the capacity retention rate is as high as 85%, and it has excellent cycle performance and rate performance.
魏士俊, 何润合, 李永兵, 靳艳梅, 张兴祥. 聚丙烯腈分子量对锂硫电池比容量和循环稳定性的影响[J]. 材料导报, 2022, 36(22): 21080285-6.
WEI Shijun, HE Runhe, LI Yongbing, JIN Yanmei, ZHANG Xingxiang. Effect of Molecular Weight of Polyacrylonitrile on Specific Capacity and Cycle Performance of Lithium-Sulfur Battery. Materials Reports, 2022, 36(22): 21080285-6.
1 Du M, Tian X, Ran R, et al. Energy Fuels, 2020, 34, 11557. 2 Li R, Sun X G, Huang Y P, et al. Materials Reports B:Research Papers,2020, 34(8), 16006(in Chinese). 李锐, 孙晓刚, 黄雅盼, 等. 材料导报:研究篇, 2020, 34(8), 16006. 3 Seh Z W, Sun Y, Zhang Q, et al. Chemical Society Reviews, 2016, 45(20), 5605. 4 Deng C, Wang Z W, Wang S P, et al. Journal of Materials Chemistry A, 2019, 7(20), 12381. 5 Yao Z, Yin H, Zhou L, et al. Small, 2019, 15(50), 1905296. 6 Lim W G, Kim S, Jo C, et al. Angewandte Chemie-International Edition, 2019, 58(52), 18746. 7 Lu Q, Zou X, Ran R, et al. Journal of Materials Chemistry A, 2019, 7, 22463. 8 Du M, Liao K, Lu Q, et al. Energy & Environmental Science, 2019, 12, 1780. 9 Fu A, Wang C, Pei F, et al. Small, 2019, 15(10), 1804786. 10 Du M, Sun Y, Liu B, et al. Advanced Functional Materials, 2021, 31, 2101556. 11 Wang L, Liu J, Yuan S, et al. Energy & Environmental Science, 2016, 9(1), 224. 12 Wang J, Fu C, Wang X, et al. Electrochimica Acta, 2018, 292(1), 568. 13 Wang H, Yang Y, Liang Y, et al. Nano Letters, 2011, 11(7), 2644. 14 Zhang Y Y. The principle of lithium-sulfur battery and the design and construction of positive electrode, Metallurgical Industry Press, China, 2020(in Chinese). 张义永. 锂硫电池原理及正极的设计与构建, 冶金工业出版社, 2020. 15 Wang X, Qian Y, Wang L, et al. Advanced Functional Materials, 2019, 29(39), 1902929. 16 Zhuang R, Yao S, Jing M, et al. Beilstein Journal of Nanotechnology, 2018, 9, 262. 17 Yao S, Xue S, Peng S, et al. Applied Physics A-Materials Science & Processing, 2018, 29(20), 17921. 18 Cho G B, Park H B, Jeong J S, et al. Journal of Nanoscience and Nanotechnology, 2018, 18(9), 6431. 19 Li J, Li K, Li M Q, et al. Journal of Power Sources, 2014, 252, 107. 20 Konarov A, Gosselink D, Doan N L, et al. Journal of Power Sources, 2014, 259, 183. 21 Lei J, Chen J, Zhang H, et al. ACS Applied Materials & Interfaces, 2020, 12(30), 33702. 22 Ju A, Yu H, Yan Y, et al. Journal of Polymer Research, 2016, 23(10), 208. 23 Peng S, Yao S, Xue S, et al. Journal of Nanoscience and Nanotechnology,2020, 20(3), 1578. 24 Yang H, Chen J, Yang J, et al. Angewandte Chemie-International Edition, 2020, 59(19), 7306. 25 Wang L, He X, Li J, et al. Journal of Materials Chemistry, 2012, 22(41), 22077. 26 Liu Y, Haridas A K, Cho K K, et al. Journal of Physical Chemistry C, 2017, 121(47), 26172. 27 Ma Z, Dou S, Shen A, et al. Angewandte Chemie-International Edition, 2015, 54(6), 1888. 28 Wei S, Ma L, Hendrickson K E, et al. Journal of the American Chemical Society, 2015, 137(37), 12143. 29 Zhang S. Energies, 2014, 7(7), 4588. 30 Jin Z, Liu Y, Wang W, et al. Energy Storage Materials, 2018, 14, 272. 31 Zhang Y, Yao S, Zhuang R, et al. Journal of Alloys and Compounds, 2017, 729, 1136. 32 Yao S, Xue S, Zhang Y, et al. Journal of Materials Science-Materials in Electronics, 2017, 28(10), 7264. 33 Yao S, Xue S, Peng S, et al. Journal of Materials Science-Materials in Electronics, 2018, 124(11), 758.