Please wait a minute...
材料导报  2022, Vol. 36 Issue (22): 21080285-6    https://doi.org/10.11896/cldb.21080285
  无机非金属及其复合材料 |
聚丙烯腈分子量对锂硫电池比容量和循环稳定性的影响
魏士俊1, 何润合1, 李永兵1, 靳艳梅1, 张兴祥1,2,*
1 天津工业大学材料科学与工程学院,天津 300387
2 天津市先进纤维与储能技术重点实验室,天津 300387
Effect of Molecular Weight of Polyacrylonitrile on Specific Capacity and Cycle Performance of Lithium-Sulfur Battery
WEI Shijun1, HE Runhe1, LI Yongbing1, JIN Yanmei1, ZHANG Xingxiang1,2,*
1 School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
2 Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage Technology, Tianjin 300387, China
下载:  全 文 ( PDF ) ( 3666KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用自由基聚合法,以丙烯腈(AN)为原料,以不同质量比的水(H2O)与二甲基亚砜(DMSO)的混合试剂为介质,制备不同分子量的聚丙烯腈(VMPAN)。随后采用升华硫(S)作为硫源,制备硫化聚丙烯腈(SPAN),探究了不同H2O与DMSO配比对PAN的理化性能以及PAN作为锂-硫电池正极时的电化学性能的影响。研究结果表明,混合试剂配比为50:50的VMPAN具有适中的分子量,用其制备出的SPAN复合材料展现出最佳性能,载硫量近52%(质量分数),锂离子扩散系数可达1.06×10-12 cm2·s-1,在0.2C和1.0C下初始放电比容量分别达到1 805.48 mAh·g-1与1 704.22 mAh·g-1。在0.2C下循环100次后正极材料可逆比容量为1 225 mAh·g-1,容量保持率高达85%,具有优异的循环性能与倍率性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏士俊
何润合
李永兵
靳艳梅
张兴祥
关键词:  锂硫电池  硫化聚丙烯腈  分子量  比容量  正极    
Abstract: Free radical polymerization of acrylonitrile (AN) in the mixed solvent of water (H2O) and dimethyl sulfoxide (DMSO) with different mass ra-tios is used to fabricate polyacrylonitrile with various molecular weights (VMPAN). Furthermore, sulfurized polyacrylonitrile (SPAN) was fabricated using sublimated sulfur as the sulfur source. The influence of various H2O and DMSO ratios on the chemical and physical properties of VMPAN and the electrochemical performance of SPAN as the positive electrode of lithium-sulfur battery were investigated. The results show that the PAN with a mixed reagent ratio of 50:50 has a moderate molecular weight, and its derived SPAN composite material exhibits the best performance. The sulfur loading and the lithium-ion diffusion coefficient were nearly 52wt% and 1.06×10-12 cm2·s-1, respectively. The initial discharge specific capacities of SPAN cathode material at 0.2C and 1.0C were 1 805.48 mAh·g-1 and 1 704.22 mAh·g-1, respectively. After 100 cycles at 0.2C, the reversible specific capacity was 1 225 mAh·g-1. Meanwhile, the capacity retention rate is as high as 85%, and it has excellent cycle performance and rate performance.
Key words:  lithium-sulfur battery    sulfurized polyacrylonitrile (SPAN)    molecular weight    specific capacity    positive electrode
出版日期:  2022-11-25      发布日期:  2022-11-25
ZTFLH:  TM912  
基金资助: 天津市新材料重大专项(16ZXCLGX00090);国家重点研发计划项目(2016YFB0303000)
通讯作者:  * zhangpolyu@aliyun.com   
作者简介:  魏士俊,于2018年6月获得天津工业大学化学工程与工艺专业学士学位,现为天津工业大学材料与科学工程学院硕士研究生,师从张兴祥教授。目前研究方向主要为锂硫电池正极材料的结构设计与性能分析。
张兴祥,天津工业大学教授、博士研究生导师,2005年博士毕业于中国香港理工大学纺织与应用科学学院。主要从事智能材料与功能材料研究。在国内外重要期刊发表文章200余篇,授权国家发明专利32项。
引用本文:    
魏士俊, 何润合, 李永兵, 靳艳梅, 张兴祥. 聚丙烯腈分子量对锂硫电池比容量和循环稳定性的影响[J]. 材料导报, 2022, 36(22): 21080285-6.
WEI Shijun, HE Runhe, LI Yongbing, JIN Yanmei, ZHANG Xingxiang. Effect of Molecular Weight of Polyacrylonitrile on Specific Capacity and Cycle Performance of Lithium-Sulfur Battery. Materials Reports, 2022, 36(22): 21080285-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080285  或          http://www.mater-rep.com/CN/Y2022/V36/I22/21080285
1 Du M, Tian X, Ran R, et al. Energy Fuels, 2020, 34, 11557.
2 Li R, Sun X G, Huang Y P, et al. Materials Reports B:Research Papers,2020, 34(8), 16006(in Chinese).
李锐, 孙晓刚, 黄雅盼, 等. 材料导报:研究篇, 2020, 34(8), 16006.
3 Seh Z W, Sun Y, Zhang Q, et al. Chemical Society Reviews, 2016, 45(20), 5605.
4 Deng C, Wang Z W, Wang S P, et al. Journal of Materials Chemistry A, 2019, 7(20), 12381.
5 Yao Z, Yin H, Zhou L, et al. Small, 2019, 15(50), 1905296.
6 Lim W G, Kim S, Jo C, et al. Angewandte Chemie-International Edition, 2019, 58(52), 18746.
7 Lu Q, Zou X, Ran R, et al. Journal of Materials Chemistry A, 2019, 7, 22463.
8 Du M, Liao K, Lu Q, et al. Energy & Environmental Science, 2019, 12, 1780.
9 Fu A, Wang C, Pei F, et al. Small, 2019, 15(10), 1804786.
10 Du M, Sun Y, Liu B, et al. Advanced Functional Materials, 2021, 31, 2101556.
11 Wang L, Liu J, Yuan S, et al. Energy & Environmental Science, 2016, 9(1), 224.
12 Wang J, Fu C, Wang X, et al. Electrochimica Acta, 2018, 292(1), 568.
13 Wang H, Yang Y, Liang Y, et al. Nano Letters, 2011, 11(7), 2644.
14 Zhang Y Y. The principle of lithium-sulfur battery and the design and construction of positive electrode, Metallurgical Industry Press, China, 2020(in Chinese).
张义永. 锂硫电池原理及正极的设计与构建, 冶金工业出版社, 2020.
15 Wang X, Qian Y, Wang L, et al. Advanced Functional Materials, 2019, 29(39), 1902929.
16 Zhuang R, Yao S, Jing M, et al. Beilstein Journal of Nanotechnology, 2018, 9, 262.
17 Yao S, Xue S, Peng S, et al. Applied Physics A-Materials Science & Processing, 2018, 29(20), 17921.
18 Cho G B, Park H B, Jeong J S, et al. Journal of Nanoscience and Nanotechnology, 2018, 18(9), 6431.
19 Li J, Li K, Li M Q, et al. Journal of Power Sources, 2014, 252, 107.
20 Konarov A, Gosselink D, Doan N L, et al. Journal of Power Sources, 2014, 259, 183.
21 Lei J, Chen J, Zhang H, et al. ACS Applied Materials & Interfaces, 2020, 12(30), 33702.
22 Ju A, Yu H, Yan Y, et al. Journal of Polymer Research, 2016, 23(10), 208.
23 Peng S, Yao S, Xue S, et al. Journal of Nanoscience and Nanotechnology, 2020, 20(3), 1578.
24 Yang H, Chen J, Yang J, et al. Angewandte Chemie-International Edition, 2020, 59(19), 7306.
25 Wang L, He X, Li J, et al. Journal of Materials Chemistry, 2012, 22(41), 22077.
26 Liu Y, Haridas A K, Cho K K, et al. Journal of Physical Chemistry C, 2017, 121(47), 26172.
27 Ma Z, Dou S, Shen A, et al. Angewandte Chemie-International Edition, 2015, 54(6), 1888.
28 Wei S, Ma L, Hendrickson K E, et al. Journal of the American Chemical Society, 2015, 137(37), 12143.
29 Zhang S. Energies, 2014, 7(7), 4588.
30 Jin Z, Liu Y, Wang W, et al. Energy Storage Materials, 2018, 14, 272.
31 Zhang Y, Yao S, Zhuang R, et al. Journal of Alloys and Compounds, 2017, 729, 1136.
32 Yao S, Xue S, Zhang Y, et al. Journal of Materials Science-Materials in Electronics, 2017, 28(10), 7264.
33 Yao S, Xue S, Peng S, et al. Journal of Materials Science-Materials in Electronics, 2018, 124(11), 758.
[1] 张琴, 胡耀波, 王润, 王俊. 镁离子电池正极材料的研究现状[J]. 材料导报, 2022, 36(7): 20050125-11.
[2] 赵文文, 王韵芳, 段东红, 刘世斌, 周娴娴, 陈良. 金属有机骨架衍生的层状Co3O4/C在锂硫电池中的应用[J]. 材料导报, 2022, 36(6): 20120257-7.
[3] 胡坤, 郭锦, 张敏刚, 连晋毅, 张怡轩, 李占龙. 金属化合物在锂硫电池正极材料及夹层中的应用[J]. 材料导报, 2022, 36(19): 21010010-11.
[4] 张苗, 魏志祥, 常晶晶. 柔性锂硫电池电极材料的结构设计[J]. 材料导报, 2022, 36(11): 21010030-11.
[5] 冯阳, 汪港, 陈君妍, 康卫民, 邓南平, 程博闻. 高性能锂硫电池研究进展与改进策略[J]. 材料导报, 2022, 36(11): 20080027-14.
[6] 郝娴, 梁峰, 李红霞, 曹云波, 王晓函, 张海军. 纳米碳化钛的制备及在储能领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 1-8.
[7] 贾政刚, 张学习, 钱明芳, 耿林, 熊岳平. 全固态锂硫电池中界面问题的研究现状[J]. 材料导报, 2021, 35(9): 9097-9107.
[8] 翟鑫华, 张盼盼, 周建峰, 何亚鹏, 黄惠, 郭忠诚. 锂离子电池用富锂锰基正极材料掺杂改性研究进展[J]. 材料导报, 2021, 35(7): 7056-7062.
[9] 彭黎波, 叶诚曦, 童庆松, 翁景峥. 改性PVDF或替代PVDF粘结剂在锂电池中的应用研究进展[J]. 材料导报, 2021, 35(5): 5174-5180.
[10] 李晓丹, 胡心雨, 刘小平, 刘小清, 申渝, 唐莹, 冯佳成. 苯并噁嗪树脂的研究新进展:智能化应用及能源、环境领域应用[J]. 材料导报, 2021, 35(3): 3209-3218.
[11] 汪仕杰, 肖慧, 任玉荣, 黄小兵, 王海燕. Na3V2(PO4)3/CN/rGO复合正极材料的构筑及储钠性能研究[J]. 材料导报, 2021, 35(24): 24006-24010.
[12] 李欢, 何妍妍, 周国伟. 普鲁士蓝及普鲁士蓝类化合物材料在钠离子电池中的研究进展[J]. 材料导报, 2021, 35(23): 23050-23056.
[13] 王皓, 李峻峰, 马悦, 杨亚楠, 张佩聪, 赖雪飞, 岳波. 锂离子电池钒系电极材料的研究进展[J]. 材料导报, 2021, 35(21): 21127-21142.
[14] 魏安柯, 王磊, 王祎. 金属-有机骨架(MOFs)用于锂硫电池硫正极材料改性的研究进展[J]. 材料导报, 2021, 35(13): 13052-13057, 13066.
[15] 周建峰, 翟鑫华, 张盼盼, 何亚鹏, 董劲, 黄惠, 郭忠诚. 富锂锰基正极材料结构优化及晶面调控研究进展[J]. 材料导报, 2021, 35(11): 11057-11065.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed