Please wait a minute...
材料导报  2021, Vol. 35 Issue (22): 22193-22199    https://doi.org/10.11896/cldb.20090133
  高分子与聚合物基复合材料 |
基于原位浸渍法的酚醛树脂改性杉木木材研究
李萍1, 张源2, 吴义强2, 袁光明2, 李贤军2, 左迎峰2
1 中南林业科技大学家具与艺术设计学院,长沙 410004
2 中南林业科技大学材料科学与工程学院,长沙 410004
Study on Phenol Formaldehyde Resin Modified Chinese Fir Wood Based on In-situ Impregnation Method
LI Ping1, ZHANG Yuan2, WU Yiqiang2, YUAN Guangming2, LI Xianjun2, ZUO Yingfeng2
1 College Furniture and Art Design, Central South University of Forestry and Technology, Changsha 410004, China
2 College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004,China
下载:  全 文 ( PDF ) ( 2812KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以苯酚、甲醛和氢氧化钠为改性剂,通过原位浸渍法对杉木木材进行了改性研究。探讨了浸渍压力、浸渍温度、浸渍时间和原位固化温度对改性杉木木材浸渍效果、强化效果和尺寸稳定效果的影响,并对改性杉木木材的化学结构、内部形貌、结晶结构和耐热性能进行了表征。结果表明,浸渍压力为0.5 MPa、浸渍温度为50 ℃、浸渍时间为32 h和原位固化温度为80 ℃时,改性杉木木材的浸渍效果、强化效果和尺寸稳定效果最佳。苯酚与甲醛在杉木木材中发生原位反应,既填充了杉木木材内部纹孔、细胞腔和细胞间隙,又与杉木木材中反应性羟基形成了氢键和化学键结合,从而有效提高了杉木木材的力学性能和耐水性能。酚醛树脂的浸入扰乱了杉木木材中纤维素结晶区定向排序良好的微纤丝,减弱了纤维素分子链的分子间作用,导致杉木木材中纤维素结晶度有一定程度降低。经过酚醛树脂原位浸渍改性后,改性杉木木材的耐热性能显著提高,可显著提高杉木制品的使用安全性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李萍
张源
吴义强
袁光明
李贤军
左迎峰
关键词:  杉木木材  酚醛树脂  原位浸渍法  强化  尺寸稳定化  热稳定性    
Abstract: Chinese fir wood was modified by in-situ impregnation method with phenol, formaldehyde and sodium hydroxide as modifiers. The effects of impregnation pressure, impregnation temperature, impregnation time and in-situ curing temperature on impregnation effect, strengthening effect and dimension stabilization effect of modified Chinese fir wood were discussed. And the chemical structure, internal morphology, crystalline structure and heat resistance of modified Chinese fir wood were characterized. The results showed that the modified Chinese fir wood had the best impregnation effect, strengthening effect and dimensional stability effect when the impregnation pressure was 0.5 MPa, the impregnation tempe-rature was 50 ℃, the impregnation time was 32 h and the in-situ curing temperature was 80 ℃. In-situ reaction of phenol and formaldehyde in Chinese fir wood not only fills the internal pits, cell cavities and cell interstices, but also forms hydrogen bonds and chemical bonds with reactive hydroxyl groups in Chinese fir wood, which effectively improved the mechanical properties and water resistance. The immersion of phenol formaldehyde resin disturbed the well-ordered microfibrils in the cellulose crystalline zone of Chinese fir wood, weakened the intermolecular interaction of cellulose molecular chains, and reduced the crystallinity to a certain extent. After in-situ impregnation modification with phenol formaldehyde resin, the heat resistance of modified Chinese fir wood was significantly improved, and the use safety of Chinese fir products was significantly improved.
Key words:  Chinese fir wood    phenol formaldehyde resin    in-situ impregnation    strengthen    dimensional stability    thermal stability
出版日期:  2021-11-25      发布日期:  2021-12-13
ZTFLH:  S781.7  
基金资助: 湖湘青年英才计划(2019RS2040);国家自然科学基金(31770606);湖南省科技重大专项(2017NK1010)和湖南省教育厅科学研究项目(17C1500)
通讯作者:  zuoyf1986@163.com   
作者简介:  李萍,中南林业科技大学,讲师。2020年毕业于中南林业科技大学,获得工学博士学位。主要从事木材功能性改良及应用研究。左迎峰,中南林业科技大学,副教授。2014年毕业于东北林业大学,获工学博士学位。同年加入中南林业科技大学材料科学与工程学院工作,主要从事木材功能性改良及生物质复合材料研究。
引用本文:    
李萍, 张源, 吴义强, 袁光明, 李贤军, 左迎峰. 基于原位浸渍法的酚醛树脂改性杉木木材研究[J]. 材料导报, 2021, 35(22): 22193-22199.
LI Ping, ZHANG Yuan, WU Yiqiang, YUAN Guangming, LI Xianjun, ZUO Yingfeng. Study on Phenol Formaldehyde Resin Modified Chinese Fir Wood Based on In-situ Impregnation Method. Materials Reports, 2021, 35(22): 22193-22199.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090133  或          http://www.mater-rep.com/CN/Y2021/V35/I22/22193
1 Li Yumin, Feng Pengfei.World Bamboo and Rattan, 2019, 17(6), 45(in Chinese).
李玉敏, 冯鹏飞.世界竹藤通讯, 2019, 17(6), 45.
2 Li Ping, Zuo Yingfeng, Wu Yiqiang, et al. Journal of Forestry Enginee-ring, 2016, 1(5), 133(in Chinese).
李萍, 左迎峰, 吴义强, 等.林业工程学报, 2016, 1(5), 133.
3 Tu Hongtao, Sun Yujun, Liu Suzhen, et al. Journal of Central South University of Forestry & Technology, 2015, 35(7), 94(in Chinese).
涂宏涛, 孙玉军, 刘素真, 等.中南林业科技大学学报, 2015, 35(7), 94.
4 Yue K, Chen Z, Lu W, et al. Construction and Building Materials, 2017, 154,956.
5 Zhang Y, Li P, Wu Y, et al. Journal of Renewable Materials, 2020, 8(11), 1473.
6 Huang Y, Fei B, Yu Y, et al. BioResources, 2012, 8(1), 272.
7 Dong Youming, Zhang Shifeng, Li Jianzhang.Journal of Forestry Engineering, 2017, 2(4), 34(in Chinese).
董友明, 张世锋, 李建章.林业工程学报, 2017, 2(4), 34.
8 Zuo Yingfeng, Wu Yiqiang, Zhang Xinli, et al. Materials Reports B:Review Papers, 2015, 29(12), 7(in Chinese).
左迎峰, 吴义强, 张新荔, 等.材料导报:综述篇, 2015, 29(12), 7.
9 Furuno T, Imamura Y, Kajita H.Wood Science and Technology, 2004, 37(5), 349.
10 Acosta A P, Labidi J, Schulz H R, et al. Forests, 2020, 11(7), 768.
11 Mubarok M, Militz H, Stéphane Dumaray, et al. Wood Science and Technology, 2020, 54(4), 479.
12 Dong Xiaoying, Li Yongfeng, Ma Lijun, et al. Journal of Building Materials, 2015, 18(6), 1028(in Chinese).
董晓英, 李永峰, 马立军, 等.建筑材料学报, 2015, 18(6), 1028.
13 Li Y, Liu Z, Dong X, et al. International Biodeterioration & Biodegradation, 2013, 84, 401.
14 He S, Lin L, Fu F, et al. BioResources, 2014, 9(2), 1924.
15 Hou Ruiguang, Li Xianjun, Liu Yuan, et al. Journal of Central South University of Forestry & Technology, 2015, 35(1), 122(in Chinese).
侯瑞光, 李贤军, 刘元, 等.中南林业科技大学学报, 2015, 35(1), 122.
16 Kumar S.Wood and Fiber Science, 2007, 26(2), 270.
17 Olsén P, Herrera N, Berglund L A.Biomacromolecules, 2020, 21(2), 597.
18 Li P, Zhang Y, Zuo Y, et al. Journal of Materials Research and Techno-logy, 2020, 9(1),1043.
19 Leppänen K, Andersson S, Torkkeli M, et al. Cellulose, 2009, 16(6), 999.
20 Toba K, Yamamoto H, Yoshida M.Cellulose, 2013, 20(2), 633.
21 Zhang Y, Li P,Wu Y, et al. Journal of Renewable Materials, 2020, 8(11),1473.
[1] 谢丹丹, 张宝荣, 赵晖, 刘君, 宋安康, 朱国本, 马爱珍, 宋文文, 赵海峰. 镍源对催化酚醛树脂原位生成碳纳米管的影响[J]. 材料导报, 2021, 35(z2): 46-49.
[2] 鞠帅威, 李艳辉, 张伟. 软磁性Co基块体非晶合金的研究进展[J]. 材料导报, 2021, 35(z2): 318-324.
[3] 马砺, 师童, 雷燕飞, 刘西西, 王昕, 于文聪, 何铖茂. 含Sb2O3/ZHS的PVC复合材料阻燃抑烟性能研究[J]. 材料导报, 2021, 35(z2): 529-534.
[4] 范翠红, 秦会斌, 周继军. 酚醛树脂在铝基板上的应用[J]. 材料导报, 2021, 35(z2): 589-592.
[5] 刘子甄, 金欣, 王闻宇, 牛家嵘. 基于分子结构设计的高性能聚酰亚胺的研究进展[J]. 材料导报, 2021, 35(z2): 600-611.
[6] 孙鹏飞, 吕平, 黄微波, 张锐, 方志强, 桑英杰. 喷涂抗爆型聚脲钢筋混凝土板抗爆性能研究[J]. 材料导报, 2021, 35(z2): 642-648.
[7] 马力, 赵赫, 昝宇宁, 肖伯律, 王东, 王全兆, 王文广. 耐热铝合金及其复合材料的制备、应用和强化机制[J]. 材料导报, 2021, 35(Z1): 414-420.
[8] 谢锐, 吕铮, 徐长伟, 刘春明. 热等静压温度对雾化合金粉制备的9Cr-ODS钢组织和性能的影响[J]. 材料导报, 2021, 35(8): 8169-8178.
[9] 姜鹏程, 王周福, 王玺堂, 刘浩, 马妍. 不同气氛下类石墨相氮化碳的合成及热稳定性能[J]. 材料导报, 2021, 35(6): 6048-6053.
[10] 王雅思, 郑建岚, 游帆. 再生骨料强化方法研究进展[J]. 材料导报, 2021, 35(5): 5053-5061.
[11] 戎易, 王德, 陈益平, 熊震宇, 程东海, 胡德安, 邹鹏远, 李文杰. 直流磁场辅助铜-钢TIG焊接头组织和性能[J]. 材料导报, 2021, 35(22): 22137-22140.
[12] 白庆伟, 麻永林, 邢淑清, 于文霞, 陈重毅. 可控电磁能(CEME)时效处理下Al-Zn-Mg-Cu合金的析出及强化机理研究[J]. 材料导报, 2021, 35(20): 20143-20148.
[13] 李隆隆, 李良军, 冯军宗, 姜勇刚, 冯坚. 炭气凝胶力学性能增强方法研究进展[J]. 材料导报, 2021, 35(19): 19041-19048.
[14] 高君华, 黄浩, 曾冲, 郑瑞伦. 孔隙率对传感器多孔电极材料导电性能的影响[J]. 材料导报, 2021, 35(18): 18018-18023.
[15] 戎易, 王德, 陈益平, 熊震宇, 程东海, 胡德安, 邹鹏远, 刘钊泽. 添加Ni中间层镁/钢激光熔钎焊接头的组织和性能[J]. 材料导报, 2021, 35(18): 18136-18140.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed