Please wait a minute...
材料导报  2024, Vol. 38 Issue (19): 22100103-7    https://doi.org/10.11896/cldb.22100103
  无机非金属及其复合材料 |
溶液浓度与组成成分对氯离子在裂缝中传输速率的影响
顾春平1,2,3, 姚程阳1, 陈士龙1, 王倩楠4,*
1 浙江工业大学土木工程学院,杭州 310023
2 浙江省工程结构与防灾减灾技术研究重点实验室,杭州 310023
3 浙江省建设投资集团股份有限公司,杭州 310013
4 浙江科技学院土木与建筑工程学院,杭州 310023
Effects of Solution Concentration and Composition on the Transport Rate of Chloride Ions in Cracks
GU Chunping1,2,3, YAO Chengyang1, CHEN Shilong1, WANG Qiannan4,*
1 College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
2 Key Laboratory of Civil Engineering Structures and Disaster Prevention and Mitigation Technology of Zhejiang Province, Hangzhou 310023, China
3 Zhejiang Construction Investment Group Co., Ltd., Hangzhou 310013, China
4 School of Civil Engineering and Architecture, Zhejiang University of Science & Technology, Hangzhou 310023, China
下载:  全 文 ( PDF ) ( 11546KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 裂缝作为氯离子在混凝土中快速传输的渠道,对混凝土耐久性影响显著,裂缝中溶液性质是影响氯离子传输速率的主要因素之一。为排除裂缝形貌的影响,本工作预制了有机玻璃和水泥净浆平直裂缝,设计了氯离子在裂缝中稳态扩散的实验方法,研究了溶液浓度(2%、3.5%、5%、7.5%、10% NaCl溶液(质量分数))和组成成分(3.5% NaCl溶液(质量分数)、人工海水、真实海水)对氯离子在裂缝中传输速率的影响。结果表明:相同裂缝宽度下,氯离子在有机玻璃和水泥净浆平直裂缝中的传输速率相近。当裂缝宽度增大时,裂缝中氯离子扩散系数随之提高;当裂缝宽度从30 μm 增大至300 μm时,氯离子扩散系数有较明显的提高,当裂缝宽度更大时,裂缝中氯离子的扩散系数的增长趋势减缓;随着 NaCl溶液浓度的提高,裂缝中氯离子扩散系数逐渐提高,裂缝宽度越大,NaCl 溶液溶度的影响越显著。当裂缝宽度不大于115 μm时,3.5% NaCl 溶液和人工海水的测试结果与真实海水测试结果相近;当裂缝宽度大于 115 μm时,3.5% NaCl溶液测得的结果偏大,而人工海水测试结果与真实海水相近。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
顾春平
姚程阳
陈士龙
王倩楠
关键词:  氯离子  裂缝宽度  扩散系数  传输速率    
Abstract: Cracks are channels for the rapid transport of chloride ions in concrete, which have significant influences on concrete durability. The nature of the solution in crack is one of the main factors affecting the transport rate of chloride ions. In order to exclude the influence of the crack morphology, this study prefabricated plexiglass and cement paste straight cracks, and designed the steady-state chloride transport test in cracks. The effects of solution concentration (2%, 3.5%, 5%, 7.5%, 10% NaCl solution) and composition (3.5% NaCl solution, artificial seawater and real seawater) on chloride transport rate in cracks were studied. The results showed that the chloride transport rate in plexiglass and cement paste straight cracks with same crack width were similar. As the crack width increased, the chloride ion diffusion coefficient in crack increased. When the crack width increased from 30 μm to 300 μm, the chloride ion diffusion coefficient in crack increased significantly. When the crack width was larger, the chloride ion diffusion coefficient increased relatively slowly; with the increase of NaCl solution concentration, the chloride ion diffusion coefficient in cracks gradually increased, and the larger the crack width, the more significant the influence of NaCl solution concentration. When the crack width was smaller than 115 μm, the results of tests performed with 3.5% NaCl solution and artificial seawater were similar to that with the real seawater; when the crack width was greater than 115 μm, the results of tests with 3.5% NaCl solution were relatively higher, while the results of the tests with artificial seawater were similar to those with real seawater.
Key words:  chloride    crack width    diffusion coefficient    transport rate
出版日期:  2024-10-10      发布日期:  2024-10-23
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52378272; 52008372);浙江省自然科学基金(LY22E080014)
通讯作者:  *王倩楠,通信作者,浙江科技学院副教授、硕士研究生导师。2008年和2018年于东南大学材料科学与工程专业本科毕业和博士毕业。2018年起在浙江科技学院土木与建筑工程学院工作至今。主要从事土木工程材料耐久性、古建筑修复材料等方面的研究工作。发表论文20余篇,包括Cement and Concrete Composites、Materials and Structures等。wangqiannan@zust.edu.cn   
作者简介:  顾春平,浙江工业大学土木工程学院校聘副教授、副研究员、硕士研究生导师。2008年和2016年于东南大学材料科学与工程专业本科毕业和博士毕业。2016年起在浙江工业大学土木工程学院工作至今。目前主要从事土木工程材料耐久性与体积变形、固废建材化利用、绿色建材等方面的研究工作。发表论文30余篇,包括Journal of Cleaner Production、Construction and Building Materials等。
引用本文:    
顾春平, 姚程阳, 陈士龙, 王倩楠. 溶液浓度与组成成分对氯离子在裂缝中传输速率的影响[J]. 材料导报, 2024, 38(19): 22100103-7.
GU Chunping, YAO Chengyang, CHEN Shilong, WANG Qiannan. Effects of Solution Concentration and Composition on the Transport Rate of Chloride Ions in Cracks. Materials Reports, 2024, 38(19): 22100103-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100103  或          http://www.mater-rep.com/CN/Y2024/V38/I19/22100103
1 Zhang J H, Yi C H, Wang S K, et al. Journal of the Chinese Ceramic Society, 2022, 50(8), 2096 (in Chinese).
张菊辉, 衣存浩, 王诗昆, 等. 硅酸盐学报, 2022, 50(8), 2096.
2 Gu C P, Ye G, Sun W. Journal of Zhejiang University-Science A(Applied Physics & Engineering), 2015, 16(2), 81.
3 Yang Y, Tan K H, Qin Y H. Materials Reports, 2021, 35(13), 13109 (in Chinese).
杨燕, 谭康豪, 覃英宏. 材料导报, 2021, 35(13), 13109.
4 Du X L, Jin L, Zhang R B. Journal of Building Structures, 2016, 37(1), 107(in Chinese).
杜修力, 金浏, 张仁波. 建筑结构学报, 2016, 37(1), 107.
5 Jin W, Yan Y, Wang H. In: Proceedings of the Fracture Mechanics of Concrete and Concrete Structures-Assessment, Durability, Monitoring and Retrofitting of Concrete Structures. Seoul, 2010.
6 Djerbi A, Bonnet S, Khelidj A, et al. Cement and Concrete Research, 2008, 38(6), 877.
7 Wang H L, Dai J G, Sun X Y, et al. Construction and Building Materials, 2016, 107, 216.
8 Ye H, Jin N, Jin X, et al. Construction and Building Materials, 2012, 36, 259.
9 Zhang M. Multiscale lattice boltzmann-finite element modelling of transport properties in cement-based materials. Ph. D. Thesis, Delft Delft University of Technology, the Netherlands, 2013.
10 Zhu H G, Yi C, Sun F Y, et al. Journal of Building Materials, 2016, 19(4), 725(in Chinese).
朱红光, 易成, 孙辅延, 等. 建筑材料学报, 2016, 19(4), 725.
11 Jin Z Q, Sun W, Zhao T J, et al. Journal of the Chinese Ceramic Society, 2009, 37(7), 1068 (in Chinese).
金祖权, 孙伟, 赵铁军, 等. 硅酸盐学报, 2009, 37(7), 1068.
12 Song Z J, Jiang L H, Heng Y S, et al. Materials Reports, 2011, 25(16), 132 (in Chinese).
宋子健, 蒋林华, 衡由索, 等. 材料导报, 2011, 25(16), 132.
13 Liu Z Y, Tang A Q, Wang J P, et al. Materials Reports, 2020, 34(15), 15083 (in Chinese).
刘志勇, 汤安琪, 王加佩, 等. 材料导报, 2020, 34(15), 15083.
14 Liu Z, Wang Y, Wang J, et al. Journal of Building Engineering, 2022, 45, 103610.
15 Liu C, Zhang M. Cement and Concrete Research, 2023, 168, 107153.
16 Kato E, Kato Y, Uomoto T. Journal of Advanced Concrete, 2005, 3(1), 85.
17 Zhang Y, Luzio G D, Alnaggar M. Construction and Building Materials, 2021, 292, 123394.
18 Lu C H, Zhang S F, Liu R G, et al. Journal of Civil, Architectural, & Environmental Engineering, 2013, 35(6), 124 (in Chinese).
陆春华, 张邵峰, 刘荣桂, 等. 土木建筑与环境工程, 2013, 35(6), 124.
19 Chen S. Study on transport behavior of chloride in concrete cracks. Master's Thesis, Zhejiang University of Technology, China, 2020(in Chinese).
陈士龙. 氯离子在混凝土裂缝中的传输行为研究. 硕士学位论文, 浙江工业大学, 2020.
20 Tian X K, Wang H L, Cheng X D, et al. Journal of Chinese Society for Corrosion and Protection, 2018, 38(4), 309 (in Chinese).
田雪凯, 王海龙, 程旭东, 等. 中国腐蚀与防护学报, 2018, 38(4), 309.
[1] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[2] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[3] 王元战, 杨旻鑫, 龚晓龙, 王禹迟, 郭尚. 考虑地下水位影响的碱渣土地基半埋混凝土内氯离子传输试验研究[J]. 材料导报, 2024, 38(7): 22010226-7.
[4] 杨志强, 王振, 黄法礼, 易忠来, 蒋金洋. 纳米氧化铝提升海洋环境高速铁路桥梁混凝土结构服役寿命研究[J]. 材料导报, 2024, 38(7): 22060232-8.
[5] 陈文龙, 周旭东, 张宇, 张云升, 马智聪. 电化学除氯对钢筋腐蚀状态及其周围混凝土微观结构的影响[J]. 材料导报, 2024, 38(23): 23070258-8.
[6] 郑建岚, 王雅思, 陈僖, 张旺城. 含氯再生骨料混凝土中钢筋抗锈蚀性能试验研究[J]. 材料导报, 2024, 38(22): 23110219-7.
[7] 张伟杰, 盛广侠, 王兰心, 王赟程, 王立国, 刘志勇, 蒋金洋, 张嘉文. 复杂服役环境下无砟轨道水泥基材料性能演变的研究综述[J]. 材料导报, 2024, 38(22): 23080140-18.
[8] 龙武剑, 钟安楠, 何闯. 硅酸盐水泥氯离子固化机理及影响因素研究进展[J]. 材料导报, 2024, 38(21): 23080022-11.
[9] 汪伟, 范志宏, 赵家琦, 杨海成. 强辐照作用下水泥浆体微结构与抗氯离子侵蚀性能研究[J]. 材料导报, 2024, 38(21): 23080026-7.
[10] 杨绿峰, 龙凤波, 孙继玮, 陈俊武. 混凝土暴露试验的稳定时长与试验分析方法[J]. 材料导报, 2024, 38(2): 22020091-7.
[11] 郑建岚, 王晓敏, 张建全. 含氯再生骨料混凝土抗氯离子渗透性能的研究[J]. 材料导报, 2024, 38(18): 23050208-6.
[12] 王少伟, 肖焰钰, 朱平华, 严先萃, 夏群. 钙溶蚀对混凝土抗氯离子侵蚀性能的影响[J]. 材料导报, 2024, 38(16): 23020121-7.
[13] 郑度奎, 李敬法, 宇波, 黄志强, 张引弟, 刘翠伟, 赵杰, 韩东旭. 非金属PE管材氢气-甲烷渗透研究进展[J]. 材料导报, 2024, 38(16): 23020018-11.
[14] 莫耀鸿, 刘剑辉, 刘乐平, 陈正, 蒋增贵, 史才军. 水泥-蔗渣灰-矿粉海砂砂浆的抗压强度与抗氯盐渗透性能研究[J]. 材料导报, 2024, 38(14): 23030005-10.
[15] 张先满, 李星涛, 季坤鹏, 陈再雨, 罗洪峰. 原位生成周期性层片结构镀层及其在NaCl溶液中的腐蚀形貌[J]. 材料导报, 2024, 38(12): 22110026-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed