A Review of the Property Evolution of Cement-Based Materials for Ballastless Track Under Complex Service Environment
ZHANG Weijie1,†, SHENG Guangxia1,†, WANG Lanxin1, WANG Yuncheng1,2, WANG Liguo1,2, LIU Zhiyong1,2, JIANG Jinyang1,2, ZHANG Jiawen1,2,*
1 School of Materials Science and Engineering,Southeast University,Nanjing 211189,China 2 Jiangsu Key Laboratory of Civil Engineering Materials,Southeast University,Nanjing 211189,China
Abstract: China's high-speed railway has entered a period of rapid development,the ballastless track is more widely used in engineering,and the environment it serves is becoming more and more complex,such as the coupling effect of high frequency and high cycle fatigue load,continuous high temperature,sudden cooling and heating,high salinity and humidity,and other environmental factors,the durability of ballastless track is facing serious challenges.Based on the application background,the structural characteristics of ballastless track and environmental characteristics of ballastless track,this paper focuses on the study of the single action of load,temperature,chlorine salt and freeze-thaw,as well as the coupling action of temperature-load,chlorine-load and freeze-thaw load.In previous studies,the static and dynamic transmission characteristics of ballastless track,the interlayer displacement of ballastless track and the evolution of various mechanical parameters under the action of single factors were revealed by using experimental and numerical simulation methods.The evolution of mechanical properties of ballastless track is directly affected by the level of load stress and the loading frequency.The damage characteristics and interlayer deformation of ballastless track under the coupled action of environment and load are more complex,which are often accompanied by material softening,stiffness degradation and interlayer cracking.The purpose of this paper is to summarize the evolution law of cement-based material properties and the corresponding material microstructure evolution mechanism under the complex service environment of ballastless track,in order to provide reference for the material design,structural optimization,as well as the improvement of its performance and durability.
通讯作者:
*张嘉文,东南大学材料科学与工程学院青年首席教授、博士研究生导师。2012年山东大学材料科学与工程学院高分子材料与工程专业本科毕业,2018年加拿大阿尔伯塔大学材料工程专业博士,从事博士后工作,2020年入职东南大学工作至今。目前主要从事水泥基材料、仿生功能性材料和表界面及分子间相互作用等方面的研究工作。发表论文30余篇,包括Journal of the American Chemical Society、Advanced Functional Materials、Engineering、Chemical Science、Chemical Engineering Journal等。jwzhang@seu.edu.cn
张伟杰, 盛广侠, 王兰心, 王赟程, 王立国, 刘志勇, 蒋金洋, 张嘉文. 复杂服役环境下无砟轨道水泥基材料性能演变的研究综述[J]. 材料导报, 2024, 38(22): 23080140-18.
ZHANG Weijie, SHENG Guangxia, WANG Lanxin, WANG Yuncheng, WANG Liguo, LIU Zhiyong, JIANG Jinyang, ZHANG Jiawen. A Review of the Property Evolution of Cement-Based Materials for Ballastless Track Under Complex Service Environment. Materials Reports, 2024, 38(22): 23080140-18.
1 Chen J J. Research on the impact and mechanism of high-speed railway on economic resilience. Ph. D. Thesis, Yunnan University of Finance and Economics, China, 2022 (in Chinese). 陈俊杰. 高速铁路对经济韧性的影响机制研究. 博士学位论文, 云南财经大学, 2022. 2 Chen S M. Research and application of dynamic inspection system for track longwave irregularities based on vision/inertial fusion. Ph. D. Thesis, China Academy of Railway Sciences, China, 2022 (in Chinese). 陈仕明. 基于视觉/惯性融合的轨道长波不平顺动态检测系统研究及应用, 博士学位论文, 中国铁道科学研究院, 2022. 3 Akita K, Hasegawa Y. IEEE Annals of the History of Computing, 2016, 38(2), 11. 4 Eisenmann J, Leykauf G, Mattner L. Proceedings of the Institution of Civil Engineers-Transport, 1994, 105(2) 91. 5 Eisenmann J, Leykauf G, Mattner L. Proceedings of the Institution of Civil Engineers-Transport, 1995, 111(4) 318. 6 Freudenstein S. Modifications to Getrac Ballastless Track approved, International Railway Journal, 2005, 092094. 7 Hiroshi O. China Railway Science, 2002, 23(2), 21. 8 Su M, Dai G, Marx S, et al. Structural Engineering International, 2019, 29(1), 160. 9 He Y P. Study on fatigue property of the CRTS Ⅲ slab track. Master's Thesis, Southwest Jiaotong University, China, 2011 (in Chinese). 何燕平. CRTSⅢ型板式无砟轨道疲劳特性研究, 硕士学位论文, 西南交通大学, 2011. 10 Zeng X H, Xie Y J, Deng D H, et al. Construction and Building Materials, 2016, 112, 93. 11 Yao H. Force analysis of slab ballastless structure of CRTS Ⅲ on subgrade. Master's Thesis, Southeast University, China, 2017 (in Chinese). 姚晖. 路基基础上CRTSⅢ型板式无砟轨道受力分析, 硕士学位论文, 东南大学, 2017. 12 Jiang X W, Guo S H, Wang W T. Journal of Railway Science and Engineering, 2021, 18(12), 3164 (in Chinese). 姜晓文, 郭世豪, 王文通. 铁道科学与工程学报, 2021, 18(12), 3164. 13 Liu K. Research on evaluation method of CRTS Ⅲ prefabricated slab track cracking condition. Master's Thesis, Southwest Jiaotong University, China, 2021 (in Chinese). 刘宽. CRTS Ⅲ型板式无砟轨道开裂状况评估方法研究, 硕士学位论文, 西南交通大学, 2021. 14 Editorial Department of China Journal of Highway and Transport. China Journal of Highway and Transport, 2021, 34(2), 1 (in Chinese). 中国公路学报编辑部. 中国公路学报, 2021, 34(2), 1. 15 Lyu H, Zhang X Y, Zhao Y G. Journal of the China Railway Society, 2023, 45(5),103(in Chinese). 吕焕, 张玄一, 赵衍刚. 铁道学报, 2023, 45(5),103. 16 Luo B C. Research on deformation damage and dynamic characteristics of slab track in subgrade-bridge transition zone in severe cold regions. Master's Thesis, Beijing Jiaotong University, China, 2020 (in Chinese). 罗必成. 严寒地区路桥过渡段无砟轨道变形损伤与动力特性研究, 硕士学位论文, 北京交通大学, 2020. 17 Song A X, Yao G W, Liu J W, et al. Journal of Civil and Environmental Engineering, 2023, 45(5), 125 (in Chinese). 宋安祥, 姚国文, 刘佳伟, 等. 土木与环境工程学报, 2023, 45(5), 125. 18 Zhu S Y. Damage behavior of high-speed railway ballastless track and its effect on structure dynamic performance. Ph. D. Dissertation, Southwest Jiaotong University, China, 2015 (in Chinese). 朱胜阳. 高速铁路无砟轨道结构伤损行为及其对动态性能的影响, 博士学位论文, 西南交通大学, 2015. 19 Yang Y, Zhang G, Wu G, et al. Engineering Structures, 2022, 252. 20 Cui D, Zhang X, Wang R, et al. Vehicle System Dynamics, 2022, 60(9), 3109. 21 Zhang J, Cai C, Zhu S, et al. Engineering Structures, 2022, 254. 22 Wu B, Zhu K T, Zeng Z P, et al. Journal of Railway Science and Engineering, 2016, 13(7), 1229 (in Chinese). 吴斌, 朱坤腾, 曾志平, 等. 铁道科学与工程学报, 2016, 13(7), 1229. 23 Zeng Z P, He X F, Yu Z W, et al. Journal of Railway Science and Engineering, 2018, 15(3), 581 (in Chinese). 曾志平, 何贤丰, 余志武, 等. 铁道科学与工程学报, 2018, 15(3), 581. 24 Pu J J. Study on statistical characteristics of wheel-rail force and vertical dynamic characteristics of CRTS Ⅰ prefabricated slab track of mixed passenger and freight railway. Master's Thesis, Southwest Jiaotong University, China, 2016 (in Chinese). 蒲建锦. 客货共线CTRS I型板式无砟轨道轮轨力统计特征及动力学响应研究, 硕士学位论文, 西南交通大学, 2016. 25 Lee M K, Barr BIG. Cement and Concrete Composites, 2004, 26(4), 299. 26 Zheng Z, Hu D, Liu P, et al. Structural Concrete, 2020, 22(S1). 27 Feng J C. Study on dynamic response of ballastless track subgrade under traffic load. Master's Thesis, East China Jiaotong University, China, 2021 (in Chinese). 冯靖淳. 交通荷载作用下无砟轨道路基动力响应研究, 硕士学位论文, 华东交通大学, 2021. 28 Zhu B. Study on polygonization wear mechanism of high-speed train wheels. Ph. D. Dissertation, Southwest Jiaotong University, China, 2021 (in Chinese). 朱彬. 高速列车车轮多边形磨耗机理研究, 博士学位论文, 西南交通大学, 2021. 29 Qiao P, Yang M. Journal of Composite Materials, 2006, 40(9), 815. 30 Kachkouch F Z, Noberto C C, Babadopulos L F D L, et al. Construction and Building Materials, 2022, 338. 31 Ren J J, Tian G Y, Xu J D, et al. Journal of China Railway Society, 2019, 41(3), 110 (in Chinese). 任娟娟, 田根源, 徐家铎, 等. 铁道学报, 2019, 41(3), 110. 32 Poveda E, Yu R C, Lancha J C, et al. Engineering Structures, 2015, 100, 455. 33 Ou Z M. Fatigue reliability analysis methods and application for slab track structure. Ph. D. Dissertation, Southeast University, China, 2016 (in Chinese). 欧祖敏. 板式无砟轨道结构疲劳可靠性分析方法及其应用研究, 博士学位论文, 东南大学, 2016. 34 Zhao W Q. Research on time-dependent interface damage evolution mechanism of ballastless track in high-speed railway. Ph. D. Thesis, Beijing Jiaotong University, China, 2021 (in Chinese). 赵闻强. 高速铁路无砟轨道层间界面经时损伤演化机理研究, 博士学位论文, 北京交通大学, 2021. 35 Liu T, Pei Y F, Su Q, et al. proceedings of the 6th International Conference on Energy Materials and Environment Engineering, 2020. 36 Zhao L, Zhou L, Yu Z, et al. Engineering Structures, 2021, 244, 112784. 37 Zhao L. Spatial refinement analysis method of high speed railway ballastless track and its application research. Ph. D. Dissertation, Beijing Jiaotong University, China, 2015 (in Chinese). 赵磊. 高速铁路无砟轨道空间精细化分析方法及其应用研究, 博士学位论文, 北京交通大学, 2015. 38 Zeng Z, Xiao Y, Wang W, et al. Materials, 2022, 15(6). 39 Yu Z, Xie Y, Shan Z, et al. Journal of Advanced Concrete Technology, 2018, 16(5), 233. 40 Zhou Y, Liu G, Liu L, et al. Building Science, 2019, 35(1), 130. 41 Krajcinovic D, Lemaitre J. Continuum Damage Mechanics Theory and Application, 1987. 42 Ren J J, Zhang K Y, Xu X S, et al. Journal of China Railway Society, 2023, 30(6), 2048 (in Chinese). 任娟娟, 章恺尧, 许雪山, 等. 铁道学报, 2023, 30(6), 2048. 43 Deng S J, Ren J J, Du W, et al. Journal of China Railway Society, 2022, 44(10), 103 (in Chinese). 邓世杰, 任娟娟, 杜威, 等. 铁道学报, 2022, 44(10), 103. 44 Liu H, He L, Yang R S, et al. Railway Engineering, 2013(10), 102 (in Chinese). 柳恒, 何林, 杨荣山. 铁道建筑, 2013(10), 102. 45 Teng S, Li Q, Liu Y. Magazine of Concrete Research, 2016, 68(19), 971. 46 Peng P, Peng F, Sun Z, et al. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11), 3099. 47 Gao Y Q, Huang H L, Wang J, et al. Journal of Wuhan University of Technology, 2010, 32(3), 13. 48 Skarzynski L, Marzec I, Tejchman J. International Journal of Fatigue, 2019, 122, 256. 49 Baktheer A, Aguilar M, Chudoba R. International Journal of Plasticity, 2021, 143, 102950. 50 Yang Z, Li H, Wen J, et al. International Journal of Fatigue, 2023, 166, 107247. 51 Zhang B, Phillips D V, Wu K. Magazine of Concrete Research, 1996, 48(177), 361. 52 Li H, Yang Z, Wen J, et al. Journal of Sustainable Cement-Based Materials, 2023, 12(16), 672. 53 He N. Design of comprehensive test platform for ballastless track of high-speed railway and simulation of test function. Master's Thesis, Beijing Jiaotong University, China, 2020 (in Chinese). 何宁. 高铁无砟轨道综合试验平台设计与试验功能模拟研究, 硕士学位论文, 北京交通大学, 2020. 54 Xu Z N. Impact of temperature effect on Bridge-based CRTS Ⅱ slab-type ballastless track and train operation. Master's Thesis, Shijiazhuang Tiedao University, China, 2020 (in Chinese). 许振楠. 温度效应对桥上CRTS Ⅱ型板式轨道及列车运行影响分析, 硕士学位论文, 石家庄铁道大学, 2020. 55 Zhao L, Gao L, Xin T, et al. Journal of the China Railway Society, 2014, 36(10), 81. 56 Wang Y R. Experimental study on mechanical properties of high-speed railway CRTS Ⅱ slab ballastless track under temperature load. Master's Thesis, Chongqing Jiaotong University, China, 2022 (in Chinese). 王月瑞. 温度荷载作用下高铁CRTS Ⅱ型板式无砟轨道力学性能试验研究, 硕士学位论文, 重庆交通大学, 2022. 57 Zhou Z. Analysis of longitudinal force characteristics of CRTS Ⅱ slab ballastless track on multi-span simply supported beam bridge. Master's Thesis, Beijing Jiaotong University, China, 2018 (in Chinese). 周振. 多跨简支梁桥上CRTSII型板式无砟轨道纵向力特性分析, 硕士学位论文, 北京交通大学, 2018. 58 Kang W, Chen S, Wei C, et al. Journal of the China Railway Society, 2019, 41(7), 127. 59 Li J, Zhao P, Wan Z, et al. Scientia Sinica Technologica, 2014, 44(7), 729. 60 Liu X, Li J, Kang W, et al. Journal of Southwest Jiaotong University, 2017, 52(6), 1037. 61 Xu Q, Fan H, Li B. Journal of Rail Way Science and Engineering, 2013, 10(3), 1. 62 Zhao L, Zhou L, Yu Z, et al. Journal of Central South University of Science and Technology, 2021, 52(3), 748. 63 Zhao L, Zhou L Y, Zhang Y Y, et al. Journal of Railway Science and Engineering, 2021, 18(2), 287 (in Chinese). 赵磊, 周凌宇, 张营营, 等. 铁道科学与工程学报, 2021, 18(2), 287. 64 Ou Z M, Sun L, Cheng Q Q, et al. Journal of China Railway Society, 2014, 36(11), 106 (in Chinese). 欧祖敏, 孙璐, 程群群. 铁道学报, 2014, 36(11), 106. 65 Jin C. Research on temperature and stress evolution of CRTS Ⅲ ballastless track slab. Master's Thesis, East China Jiaotong University, China, 2020 (in Chinese). 金晨. CRTS Ⅲ型无砟轨道板温度及应力演化规律研究, 硕士学位论文, 华东交通大学, 2020. 66 Yan B, Dai G L, Su H T, et al. Journal of South China University of Technology, 2014, 42(12), 9 (in Chinese). 闫斌, 戴公连, 苏海霆. 华南理工大学学报, 2014, 42(12), 9. 67 Zeng Z, Peng G, Wang W, et al. Materials, 2022, 15(3). 68 Yan B, Chen R Q, Xie H R, et al. Journal of Railway Science and Engineering, 2021, 18(4), 830 (in Chinese). 闫斌, 程瑞琦, 谢浩然, 等. 铁道科学与工程学报, 2021, 18(4), 830. 69 Liu W B, Wang J J, Yang Q L, et al. Railway Engineering, 2015(3), 103 (in Chinese). 刘伟斌, 王继军, 杨全亮, 等. 铁道建筑, 2015(3), 103. 70 Zhao P R, Liu X Y, Yang R S, et al. Journal of China Railway Society, 2016, 38(1), 92 (in Chinese). 赵坪锐, 刘学毅, 杨荣山, 等. 铁道学报, 2016, 38(1), 92. 71 You M X. Study on temperature field features and effection of slab ballastless track. Master's Thesis, Beijing Jiaotong University, China, 2016 (in Chinese). 尤明熙. 板式无砟轨道温度场特性及效应研究, 硕士学位论文, 北京交通大学, 2016. 72 Sun Z J, Wang Z P, Wang J, et al. Railway Standard Design, 2018, 62(11), 64 (in Chinese). 孙泽江, 王泽萍, 汪杰, 等. 铁道标准设计, 2018, 62(11), 64. 73 Li J Y, Li Z W, He Y L, et al. Railway Standard Design, 2019, 63(4), 40 (in Chinese). 李佳雨, 李再帏, 何越磊, 等. 铁道标准设计, 2019, 63(4), 40. 74 Jin H, Li Z, Yu S. Chinese Journal of Applied Mechanics, 2022, 39(3), 572. 75 Liu P, Yu Z. China Railway Science, 2014, 35(4), 136. 76 Wang Z, Li Y, Wei J, et al. Journal of Experimental Mechanics, 2020, 35(6), 1060. 77 Yoon S, Wang K J, Weiss W J, et al. ACI Materials Journal, 2000, 97(6), 637. 78 Jiang H F. A research on foundation settlement repairing experimentation of the CRTS Ⅱ slab ballastless track on bridge for high speed railway. Master's Thesis, China Academy of Railway Sciences, China, 2015 (in Chinese). 姜惠峰. 高速铁路CRTS Ⅱ型板式无砟轨道桥梁基础沉降顶升修复试验研究, 硕士学位论文, 中国铁道科学研究院, 2015. 79 Chen Z, Yang L, Jiang Q. Concrete, 2013(6), 15. 80 Sun M, Sun C T, Zhang P, et al. Bulletin of the Chinese Ceramic Society, 2021, 40(4), 1154 (in Chinese). 孙明, 孙丛涛, 张鹏, 等. 硅酸盐通报, 2021, 40(4), 1154. 81 Zhu C, Liu X, Liu C, et al. Construction and Building Materials, 2022, 353. 82 Shi C, Yuan Q, Deng D, et al. Journal of the Chinese Silicate Society, 2007, 35(4), 522. 83 Chen X, Liu G, Yu A, et al. Journal of Materials Science and Engineering, 2020, 38(4), 669. 84 Sun P, Jia J, Zhang L. Concrete, 2012(4), 15. 85 Wu Y, Zhu Y, Liu J. Hydro-Science and Engineering, 2012(3), 50. 86 Xue P, Xiang Y. Journal of Zhejiang University Engineering Science, 2010, 44(4), 831. 87 Zuo C J. Investigation on the service life prediction of marine concrete with the effect of multiple environmental factors. Master's Thesis, Harbin Engineering University, China, 2021 (in Chinese). 左宸嘉. 多因素耦合作用下海工混凝土寿命预测研究, 硕士学位论文, 哈尔滨工程大学, 2021. 88 Rong G, He T, Zhang G, et al. Materials Research Express, 2023, 10(4), 042002. 89 Yan S, Liang Y. Journal of Building Engineering, 2023, 74, 106897. 90 Zhao X W. China Municipal Engineering, 2022(4), 59 (in Chinese). 赵辛玮. 中国市政工程, 2022(4), 59. 91 Tong L Y, Xiong Q X, Zhang M, et al. Construction and Building Materials, 2023, 367, 130096. 92 Alsheet F, Razaqpur A G, Kim Y. Journal of Materials in Civil Engineering, 2022, 34(12). 93 Ju X L, Wu L J, Liu M W, et al. Materials Reports, 2021, 35(24), 24075 (in Chinese). 鞠学莉, 吴林键, 刘明维, 等. 材料导报, 2021, 35(24), 24075. 94 Liu J, Chen X, Rong H, et al. Materials, 2022, 15(12), 4171. 95 Wang X, Fan H, Miao R Y, et al. Science Technology and Engineering, 2023, 23(7), 2993 (in Chinese). 王祥, 范宏, 苗润阳, 等. 科学技术与工程, 2023, 23(7), 2993. 96 Athibaranan A, Karthikeyan J, Shraddha R. Journal of Building Pathology and Rehabilitation, 2021, 7, 1. 97 Lai N, Li L, Yang C, et al. Ocean Engineering, 2023, 279, 114590. 98 Feng X. Transfer mechanism and model research on the chloridion in ballastless track. Master's Thesis, Southwest Jiaotong University, China, 2019 (in Chinese). 凤翔. 无砟轨道中氯离子的传输机制与模型研究, 硕士学位论文, 西南交通大学, 2019. 99 Tian S. Mechanical behavior of coarse grained materials and dynamic response of high-speed railway's embankment in freezing-thawing regions of high latitude. Ph. D. Dissertation, Harbin Institute of Technology, China, 2020 (in Chinese). 田爽. 高寒冻融区高铁路基粗粒填料力学性能与路基振动反应分析, 博士学位论文, 哈尔滨工业大学, 2020. 100 Jiang L, Weng X, Yan X, et al. Journal of Central South University of Science and Technology, 2015, 46(8), 3118. 101 Yu N N. Research on meso-level numerical simulation of concrete mechanical properties based on freeze-thaw damage model. Master's Thesis, Xi'an University of Technology, China, 2021 (in Chinese). 郁宁宁. 基于冻融损伤模型的混凝土力学性能细观数值模拟研究, 硕士学位论文, 西安理工大学, 2021. 102 Sun K K. Research on the deterioration regularity and damage mechanism of geopolymer concrete under freeze-thaw cycles. Ph. D. Thesis, Chongqing University, China, 2021 (in Chinese). 孙科科. 冻融循环条件下地聚合物混凝土劣化规律及机理研究, 博士学位论文, 重庆大学, 2021. 103 Tao J Y. Study on hydration, autogenous shrinkage and freeze-thaw resistance of early-age cement pastes. Ph. D. Thesis, Huazhong University of Science and Technology, China, 2021 (in Chinese). 陶佳音. 早龄期水泥浆水化、自收缩与抗冻融性能研究, 博士学位论文, 华中科技大学, 2021. 104 Wang L. Degradation mechanism of frost resistance of concrete after load damage. Master's Thesis, Dalian University of Technology, China, 2021 (in Chinese). 王兰. 荷载损伤混凝土抗冻性能的退化机理, 硕士学位论文, 大连理工大学, 2021. 105 Zhang S H. Analysis of mechanical characteristics of CRTS Ⅲ slab ballastless track structure on bridge complex loads. Master's Thesis, East China Jiaotong University, China, 2020 (in Chinese). 张思皓. 复杂荷载条件下桥上CRTS Ⅲ型板式无砟轨道结构力学特性分析, 硕士学位论文, 华东交通大学, 2020. 106 Ren J J, Zhang S Y, Xu X S, et al. China Railway, 2022(8), 76 (in Chinese). 任娟娟, 张书义, 许雪山, 等. 中国铁路, 2022(8), 76. 107 Wardeh G, Mohamed M A S, Ghorbel E. Journal of Building Physics, 2011, 35(1), 54. 108 Yan B, Lou X R L, Xie H R, et al. Journal of Traffic and Transportation, 2021, 21(5), 62 (in Chinese). 闫斌, 娄徐瑞利, 谢浩然, 等. 交通运输工程学报, 2021, 21(5), 62. 109 Qu Y N, Zhong X H, Wang J H, et al. China Concrete and Cement Products, 2022(2), 8 (in Chinese). 渠亚男, 仲新华, 王家赫, 等. 混凝土与水泥制品, 2022(2), 8. 110 Wu D, Wang C, Liu H, et al. Construction and Building Materials, 2023, 369, 130637. 111 Su H Z, Xie W. Bulletin of the Chinese Ceramic Society, 2021, 40(4), 1053 (in Chinese). 苏怀智, 谢威. 硅酸盐通报, 2021, 40(4), 1053. 112 Bao W Q, Lu H Q, Guo Q, et al. Journal of Engineering Geology, 2023, 31(4), 1213 (in Chinese). 包卫星, 卢汉青, 郭强, 等. 工程地质学报, 2023, 31(4), 1213. 113 Lan W, Zhang J, Liu Y. Journal of Agricultural University of Hebei, 2016, 39(3), 116. 114 Liu Z, Li X, Wu W. Chinese Journal of Geotechnical Engineering, 2004, 26(6), 797. 115 Shen Y, Yang G, Wang T, et al. Journal of Glaciology and Geocryology, 2019, 41(1), 117. 116 Wu H, Jin W, Yan Y, et al. Journal of Zhejiang University Engineering Science, 2012, 46(4), 650. 117 Olsen M P J. Cement and Concrete Research, 1984, 14(1), 113. 118 Jacobsen S, Sellevold E J. Cement and Concrete Research, 1996, 26(1), 55. 119 Zuber B, Marchand J. Materials and Structures, 2004, 37(268), 257. 120 Ueda T, Hasan M, Nagai K, et al. Journal of Materials in Civil Engineering, 2009, 21(6), 244. 121 Hanjari K Z, Utgenannt P, Lundgren K. Cement and Concrete Research, 2011, 41(3), 244. 122 Tan X. Study on mechanical and deformation characteristics of CRTS Ⅲ slab ballastless track under complicated temperature. Master's Thesis, Beijing Jiaotong University, China, 2018 (in Chinese). 谭希. 复杂温度条件下CRTS Ⅲ型板式无砟轨道受力与变形特性研究, 硕士学位论文, 北京交通大学, 2018. 123 Li P G. Analysis of the interface damage of CRTS Ⅱ slab track and its influences. Ph. D. Thesis, Southwest Jiaotong University, China, 2015 (in Chinese). 李培刚. CRTS Ⅱ型板式轨道层间损伤及其影响研究, 博士学位论文, 西南交通大学, 2015. 124 Zeng Z, Ye M, Liu F, et al. Advances in Mechanical Engineering, 2021, 13(3), 004317. 125 Zhao G T, Zhao L, Yang G T. China Railway Science, 2021, 42(6), 1 (in Chinese). 赵国堂, 赵磊, 杨国涛. 中国铁道科学, 2021, 42(6), 1. 126 Li Y, Chen J, Wang J, et al. Ksce Journal of Civil Engineering, 2020, 24(4), 1209. 127 Li Q P. Numerical analysis on track slab damage of the CRTS Ⅲ ballastless track under temperature loads and vehicle loads. Master's Thesis, Southwest Jiaotong University, China, 2018 (in Chinese). 李全鹏. 温度和车辆荷载作用下CRTS Ⅲ型无砟轨道板损伤数值模拟分析, 硕士学位论文, 西南交通大学, 2018. 128 Song L, Liu H, Xu L, et al. Structures, 2023, 53, 408. 129 Wang J, Gao L, Zhao W, et al. Construction and Building Materials, 2022, 360, 129459. 130 Gerard B, Puaudier-Cabot G, Laborderie C. International Journal of Solids and Structures, 1998, 35(31), 4107. 131 Yang Z Q, Li H J, Wen J X, et al. Railway Engineering, 2022, 62(12), 24 (in Chinese). 杨志强, 李化建, 温家馨, 等. 铁道建筑, 2022, 62(12), 24. 132 Jiang L, Li C, Zhu C, et al. Construction and Building Materials, 2017, 151, 119. 133 Zhu P Y, Zheng Y L, Luo W B, et al. Ksce Journal of Civil Engineering, 2020, 24(1), 187. 134 Li H, Xu Z P, Wu T, et al. Low Temperature Architecture Technology, 2021, 43(5), 41 (in Chinese). 李鹤, 徐志鹏, 吴桐. 低温建筑技术, 2021, 43(5), 41. 135 Wang J, Basheer P A M, Nanukuttan S V, et al. Construction and Building Materials, 2016, 108, 56. 136 Ren J J, Du W, Deng S J, et al. Journal of Southwest Jiaotong University, 2021, 56(3), 510 (in Chinese). 任娟娟, 杜威, 邓世杰, 等. 西南交通大学学报, 2021, 56(3), 510. 137 Li W, Jiang L H, Wang Y L, et al. Concrete, 2014(1), 31 (in Chinese). 李炜, 蒋林华, 王永亮, 等. 混凝土, 2014(1), 31. 138 Yoon S, Wang K J, Weiss W J, et al. ACI Materials Journal, 2000, 97(6), 637. 139 Liu Q F, Hu Z, Wang X E, et al. Construction and Building Materials, 2022, 325, 126797. 140 Jiang J Y, Sun W, Wang J, et al. Journal of Southeast University, 2010, 40(2), 362 (in Chinese). 蒋金洋, 孙伟, 王晶, 等. 东南大学学报, 2010, 40(2), 362. 141 Yang J, Shen A, Lyu Z, et al. Arabian Journal for Science and Engineering, 2023, 48(4), 4227. 142 Du W. Research on properties of road concrete in coupling with freeze-thawing and loading. Master's Thesis, Harbin Institute of Technology, China, 2011 (in Chinese). 杜薇. 冻融与荷载耦合作用下路面水泥混凝土性能的研究, 硕士学位论文, 哈尔滨工业大学, 2011. 143 Li N, Long G, Fu Q, et al. Construction and Building Materials, 2019, 200, 198. 144 Liu X, Yang X, Zheng W, et al. Case Studies in Construction Materials, 2023, 18. 145 Shen A, Lin S, Guo Y, et al. Construction and Building Materials, 2018, 174, 684. 146 Wang R, Zhang Q, Li Y. Construction and Building Materials, 2022, 319. 147 Tian W, Tian X P, Pei Z R, et al. Journal of Basic Science and Engineering, 2017, 25(3), 595 (in Chinese). 田威, 田雪萍, 裴志茹, 等. 应用基础与工程科学学报, 2017, 25(3), 595. 148 Zhou X B, Zheng S N, Wang X C, et al. Building Science, 2023, 39(3), 15 (in Chinese). 周晓兵, 郑睢宁, 王晓川, 等. 建筑科学, 2023, 39(3), 15. 149 Ma K, Li S, Long G, et al. Journal of Materials in Civil Engineering, 2020, 32(6), 04020147. 150 Guan X, Niu D, Wang J, et al. Journal of Disaster Prevention and Mitigation Engineering, 2015, 35(6), 777. 151 Lemaitre J. Engineering Fracture Mechanics, 1986, 25(5-6), 523. 152 Wang J W, Lu J Z, Zhu C L, et al. Building Science, 2022, 38(7), 34 (in Chinese). 王建伟, 逯静洲, 朱朝磊, 等. 建筑科学, 2022, 38(7), 34. 153 Jang J G, Kim H K, Kim T S, et al. Construction and Building Materials, 2014, 59, 129.