Please wait a minute...
材料导报  2024, Vol. 38 Issue (19): 23020048-12    https://doi.org/10.11896/cldb.23020048
  无机非金属及其复合材料 |
高地热环境对铁路隧道混凝土性能的影响机理及评价指标
董昊良1,2, 李化建1,3,*, 温家馨1,2, 杨志强1,3, 王振1,3, 黄法礼1,3, 易忠来1,3
1 中国铁道科学研究院集团有限公司铁道建筑研究所,北京 100081
2 中国铁道科学研究院研究生部,北京 100081
3 高速铁路轨道系统全国重点实验室,北京 100081
Influence Mechanism and Evaluation Index of High Geothermal Environment on Performance of Railway Tunnel Concrete
DONG Haoliang1,2, LI Huajian1,3,*, WEN Jiaxin1,2, YANG Zhiqiang1,3, WANG Zhen1,3, HUANG Fali1,3, YI Zhonglai1,3
1 Railway Engineering Research Institute, China Academy of Railway Science Corporation Limited, Beijing 100081, China
2 Graduate School, China Academy of Railway Sciences, Beijing 100081, China
3 National Key Laboratory of High-speed Railway Track System, Beijing 100081, China
下载:  全 文 ( PDF ) ( 4452KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对高地热隧道内铁路工程混凝土的性能劣化问题,本文系统总结了高地热环境对铁路工程隧道喷射混凝土、隧道衬砌混凝土和无砟轨道混凝土的影响,对比了不同结构类型隧道混凝土的劣化特征,提出高地热、列车荷载或侵蚀性盐类耦合作用下的铁路隧道混凝土劣化是未来高地热铁路隧道需要关注的重点。从孔结构、微观特征和物相组成等角度得出,高地热环境下铁路隧道混凝土性能劣化的原因是高温下混凝土浆体结构疏松以及水化产物分布不均匀。建议以混凝土导热系数、强度损失比作为高地热环境铁路隧道混凝土性能的评价指标,指出具有较低导热系数的相变材料混凝土和地质聚合物混凝土是未来解决高地热环境下铁路隧道混凝土性能劣化问题的有效途径,可为高地热环境下铁路隧道混凝土的施工和安全服役提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董昊良
李化建
温家馨
杨志强
王振
黄法礼
易忠来
关键词:  高地热  喷射混凝土  衬砌混凝土  无砟轨道混凝土  影响机理  评价指标    
Abstract: To address the problem of deterioration of railway tunnel concrete under high geothermal environment, this paper systematically lists the effects of high geothermal environment on railway tunnel shotcrete, tunnel lining concrete and ballastless track concrete, and then compares features of deterioration of tunnel concrete. Furthermore, it is proposed that the accelerated deterioration of railway tunnel concrete under the coupling effect of high geothermal and train load or high geothermal and corrosive salts is a problem that should be paid more attention to in the future. From the perspective of pore structure, microscopic characteristics and phase composition, it is concluded that the deterioration of concrete performance in railway tunnel under high geothermal environment is caused by loose concrete slurry structure and uneven distribution of hydration products. Therefore, the paper proposes the thermal conductivity and strength loss rate as evaluation indexes for the performance of railway tunnel concrete, with a view to providing reference for the construction and safe operation of railway tunnel concrete under high geothermal environment.
Key words:  high geothermal temperature    shotcrete    lining concrete    ballastless track concrete    influence mechanism    evaluation index
出版日期:  2024-10-10      发布日期:  2024-10-23
ZTFLH:  TU528  
基金资助: 铁科院院基金(2021WR002);国家自然科学基金(U1934206;52108260)
通讯作者:  *李化建,通信作者,中国铁道科学研究院研究员、博士研究生导师,长期从事固体废弃物建材资源化、高速铁路新型混凝土及其结构耐久性方面的应用基础研究。主持国家自然科学基金、国家重点研发计划、省部级科研课题30余项,编制标准16部,研究成果获国家科技进步二等奖1项,技术发明二等奖1项,中国专利优秀奖2项,省部级科技进步特等奖3项、一等奖7项。chinasailor@163.com   
作者简介:  董昊良,2021年7月于北京科技大学获得工学学士学位。现为中国铁道科学研究院硕士研究生,在李化建研究员的指导下进行研究。主要从事高铁高性能混凝土及其结构耐久性领域的研究。
引用本文:    
董昊良, 李化建, 温家馨, 杨志强, 王振, 黄法礼, 易忠来. 高地热环境对铁路隧道混凝土性能的影响机理及评价指标[J]. 材料导报, 2024, 38(19): 23020048-12.
DONG Haoliang, LI Huajian, WEN Jiaxin, YANG Zhiqiang, WANG Zhen, HUANG Fali, YI Zhonglai. Influence Mechanism and Evaluation Index of High Geothermal Environment on Performance of Railway Tunnel Concrete. Materials Reports, 2024, 38(19): 23020048-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23020048  或          http://www.mater-rep.com/CN/Y2024/V38/I19/23020048
1 Cui S, Liu P, Cui E, et al. Construction and Building Materials, 2018, 173, 124.
2 Chen G, Xu P, Mi G, et al. Construction and Building Materials, 2019, 225, 441.
3 Liu P, Cui S, Li Z, et al. Construction and Building Materials, 2019, 207, 329.
4 Xie J T, Yu Y Y. Journal of Railway Engineering Society, 2013(12), 5 (in Chinese).
谢君泰, 余云燕. 铁道工程学报, 2013(12), 5.
5 China Academy of Railway Sciences. Study on evolution mechanism of concrete properties and key preparation technologies in high geothermal environment. Beijing, 2022 (in Chinese).
中国铁道科学研究院. 高地热环境下混凝土性能演变机理及制备关键技术研究. 北京, 2022.
6 Liu P. Properties research and mechanism analysis of shotcrete in a hot-dry environment of high-temperature geothermal tunnel. Ph.D. Thesis, Southwest Jiaotong University, China, 2016 (in Chinese).
刘品. 高地温隧道干热环境喷射混凝土性能研究及机理分析. 博士学位论文, 西南交通大学, 2016.
7 Wang M, Hu Y, Wang Q, et al. Construction and Building Materials, 2019, 229, 116989.
8 Yuan Q, Peng M Q, Li Y L, et al. Railway Engineering, 2021, 61(8), 6 (in Chinese).
元强, 彭茂庆, 李岳林, 等. 铁道建筑, 2021, 61(8), 6.
9 Su H, Yin W Q, Wang C, et al. Tunnel Construction, 2020, 40(12), 1700 (in Chinese).
宿辉, 尹文强, 王翀, 等. 隧道建设(中英文), 2020, 40(12), 1700.
10 Yin W Q. Study on mechanical properties of shotcrete under high rock temperature based on pore structure characteristics. Master's Thesis, Hebei University of Engineering, China, 2021 (in Chinese).
尹文强. 基于孔隙结构特征的高岩温下喷射混凝土力学性能研究. 硕士学位论文, 河北工程大学, 2021.
11 Hu Y P, Wang M N, Wang Z L, et al. Construction and Building Materials, 2020, 263, 120171.
12 Cheng L K. Industrial Construction, 1986(4), 47 (in Chinese).
程良奎. 工业建筑, 1986(4), 47.
13 Yang H Y. Study on performance of shotcrete under heat harm tunnel and structure behavior analysis. Master's Thesis, Southwest Jiaotong University, China, 2013 (in Chinese).
杨红艳. 热害隧道喷射混凝土性能研究及结构行为分析. 硕士学位论文, 西南交通大学, 2013.
14 Fan L D, Li P T, Yu Y Q, et al. Bulletin of the Chinese Ceramic Society, 2017, 36(10), 3487 (in Chinese).
范利丹, 李培涛, 余永强, 等. 硅酸盐通报, 2017, 36(10), 3487.
15 Ma Q J, Duan Y, Su H, et al. Water Resources and Hydropower Engineering, 2015, 46(9), 4 (in Chinese).
马秋娟, 段宇, 宿辉, 等. 水利水电技术, 2015, 46(9), 4.
16 Cui S A, Li J W, Ye Y Z, et al. Journal of Building Materials, 2013, 16(4), 5 (in Chinese).
崔圣爱, 李江渭, 叶跃忠, 等. 建筑材料学报, 2013, 16(4), 5.
17 Duan L, Zhang Y, Lai J. Advances in Materials Science and Engineering, 2019. https:∥doi. org/10. 1155/2019/8709087.
18 Tang Y, Xu G, Lian J, et al. Construction and Building Materials, 2016, 124, 1109.
19 Wang J, Niu D, Zhang Y. Construction and Building Materials, 2015, 95, 312.
20 Johannesson B, Utgenannt P. Cement and Concrete Research, 2001, 31(6), 925.
21 Šavija B, LukoviĆ M. Construction and Building Materials, 2016, 117, 285.
22 Tong J, Cai Y, Gui D, et al. Construction and Building Materials, 2022, 320, 126196.
23 ACI Committee 305. Hot weather concreting, American Concrete Institute, Farmington Hills, Mich., 2000.
24 Sampebulu V. Journal of Engineering and Technological Sciences, 2012, 44(1), 21.
25 Huang F L, Li H J, Yi Z L, et al. Bulletin of the Chinese Ceramic Society, 2018, 37(8), 8 (in Chinese).
黄法礼, 李化建, 易忠来, 等. 硅酸盐通报, 2018, 37(8), 8.
26 Ahmadi B H. Materials and Structures, 2000, 33(8), 511.
27 Nehdi M, Al Martini S. Journal of Materials in Civil Engineering, 2007, 19(12), 1090.
28 Ma S, Kawashima S. Construction and Building Materials, 2019, 215, 119.
29 Bohloli B, Skjølsvold O, Justnes H, et al. Tunnelling and Underground Space Technology, 2019, 91, 103011.
30 Wang M, Zhu Z, Liu R, et al. Construction and Building Materials, 2021, 295, 123684.
31 Feys D, Asghari A. Cement and Concrete Research, 2019, 117, 69.
32 Petit J Y, Wirquin E, Vanhove Y, et al. Cement and Concrete Research, 2007, 37(5), 655.
33 Lin F, Meyer C. Cement and Concrete Research, 2009, 39(4), 255.
34 Bogner A, Link J, Baum M, et al. Cement and Concrete Research, 2020, 130, 105977.
35 Kong X, Zhang Y, Hou S. Rheologica Acta, 2013, 52(7), 707.
36 Li X H. Based on high temperature tunnel lining concrete mechanics performance study. Master's Thesis, Hebei University of Engineering, China, 2016 (in Chinese).
李向辉. 基于高地温隧洞衬砌混凝土力学性能研究. 硕士学位论文, 河北工程大学, 2016.
37 Yanjie B, Hui S, Bai Y, et al. Journal of Building Engineering, 2022, 57, 104906.
38 Liu S, Fu J, Yang J, et al. KSCE Journal of Civil Engineering, 2020, 24(12), 3875.
39 Wang Y S, Yang C, Ye Y Z, et al. Tunnel Construction, 2013, 33(10), 6 (in Chinese).
王玉锁, 杨超, 叶跃忠, 等. 隧道建设, 2013, 33(10), 6.
40 Zhang C. Study on mechanics characteristic of tunnel lining constructure in high geo-temperature region. Master's Thesis, Southwest Jiaotong University, China, 2013 (in Chinese).
张冲. 高岩温隧道支护结构力学特性研究. 硕士学位论文, 西南交通大学, 2013.
41 He T S, Zhang D, Wang Y, et al. Bulletin of the Chinese Ceramic Society, 2013, 32(2), 5 (in Chinese).
何廷树, 张弟, 王艳, 等. 硅酸盐通报, 2013, 32(2), 5.
42 Cheng L. Railway Standard Design, 2015, 59(8), 4 (in Chinese).
程磊. 铁道标准设计, 2015, 59(8), 4.
43 Zhang D. Research on the durability of high-temperature rock-wall tunnel lining concrete. Master's Thesis, Xi'an University of Architecture and Technology, 2013 (in Chinese).
张弟. 高岩温隧道衬砌混凝土耐久性能的研究. 硕士学位论文, 西安建筑科技大学, 2013.
44 Hong F, Hou D, Wang P, et al. Construction and Building Materials, 2022, 349, 128662.
45 Guo J J, Wang K, Guo T, et al. Materials, 2019, 12(17), 2755.
46 Stark D. Special Publication, 1991, 126, 973.
47 Poyet S, Sellier A, Capra B, et al. Journal of Materials in Civil Engineering, 2006, 18(4), 588.
48 Pathirage M, Bousikhane F, D'ambrosia M, et al. International Journal of Damage Mechanics, 2019, 28(2), 291.
49 Kawabata Y, Dunant C, Yamada K, et al. Cement and Concrete Research, 2019, 125, 105888.
50 Wang J J, Yu R L, Wang M, et al. China Railway Science, 2010, 31(3), 6 (in Chinese).
王继军, 尤瑞林, 王梦, 等. 中国铁道科学, 2010, 31(3), 6.
51 Lu W L, Ji W Y, Du J S. China Railway Science, 2006, 27(6), 6 (in Chinese).
卢文良, 季文玉, 杜进生. 中国铁道科学, 2006, 27(6), 6.
52 Liu Y, Zhao G T. China Railway Science, 2013, 34(4), 7 (in Chinese).
刘钰, 赵国堂. 中国铁道科学, 2013, 34(4), 7.
53 Wang J X, Yang Z G. China Railway Science, 2009, 30(5), 7 (in Chinese).
王军玺, 杨治国. 中国铁道科学, 2009, 30(5), 7.
54 Tang J F, Yin H T, Zeng Z P, et al Journal of Railway Science and Engineering, 2011, 8(1), 5 (in Chinese).
唐进锋, 尹华拓, 曾志平, 等. 铁道科学与工程学报, 2011, 8(1), 5.
55 Zhao C F, Liu J C, Mao H H, et al. Scientia Sinica Technologica, 2018, 48(1), 8 (in Chinese).
赵春发, 刘建超, 毛海和, 等. 中国科学:技术科学, 2018, 48(1), 8.
56 Zhao G T, Liu Y. Journal of the China Railway Society, 2020, 42(7), 10 (in Chinese).
赵国堂, 刘钰. 铁道学报, 2020, 42(7), 10.
57 Liu J C. Damage analysis of cement asphalt mortar layers interface for CRTS II ballastless slab track. Master's Thesis, Southwest Jiaotong University, China, 2016 (in Chinese).
刘建超. 温度荷载作用下CRTSⅡ型板式无砟轨道砂浆层界面损伤分析. 硕士学位论文, 西南交通大学, 2016.
58 Liu X Y. Theory and method of ballastless track design for passenger dedicated line, Southwest Jiaotong University Press, China, 2010, pp.161 (in Chinese).
刘学毅. 客运专线无砟轨道设计理论与方法, 西南交通大学出版社, 2010, pp.161.
59 Zhang P F, Tu J, Gui H, et al. Journal of Southwest JiaoTong University, 2021, 56(5), 8 (in Chinese).
张鹏飞, 涂建, 桂昊, 等. 西南交通大学学报, 2021, 56(5), 8.
60 Chang F W. Research on the temperature field and mechanical properties at early age for CRTSIII type slab ballastless track self-compacting concrete. Master's Thesis, Southwest Jiaotong University, China, 2020 (in Chinese).
常逢文. CRTSⅢ型板式无砟轨道自密实混凝土早龄期温度场及力学特性研究. 硕士学位论文, 西南交通大学, 2020.
61 Chen X P. Journal of East China Jiaotong University, 2012, 29(3), 5 (in Chinese).
陈小平. 华东交通大学学报, 2012, 29(3), 5.
62 Su R, Lv Y, Su Q, et al. Construction and Building Materials, 2023, 375, 130974.
63 Zhu S, Luo J, Wang M, et al. Railway Engineering Science, 2020, 28, 408.
64 Zhang Y, Wu K, Gao L, et al. Construction and Building Materials, 2019, 224, 387.
65 Ren J, Wang J, Li X, et al. Construction and Building Materials, 2020, 230, 116995.
66 Xiao H, Zhang Y, Li Q, et al. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 233(7), 678.
67 Sun K, Nong X, Feng Q, et al. Construction and Building Materials, 2023, 366, 130181.
68 Yuan Q, Peng M, Yao H, et al. Construction and Building Materials, 2022, 335, 127507.
69 Fan L, Zhang Z, Yu Y, et al. Construction and Building Materials, 2017, 153, 423.
70 Cui S, Liu P, Su J, et al. Construction and Building Materials, 2018, 174, 603.
71 Shen D, Jiang J, Shen J, et al. Construction and Building Materials, 2016, 103, 67.
72 Barluenga G, Puentes J, Palomar I. Construction and Building Materials, 2015, 77, 66.
73 Hammer T A. Materials and Structures, 2001, 34(5), 273.
74 Richardson I G. Cement and Concrete Research, 2004, 34(9), 1733.
75 Wang P, Li N, Xu L. Cement and Concrete Research, 2017, 100, 203.
76 Xu L, Wu K, Rößler C, et al. Cement and Concrete Composites, 2017, 80, 298.
77 Niu D, Zhang S, Wang Y, et al. Construction and Building Materials, 2020, 264, 120234.
78 Zhou Q, Glasser F P. Cement and Concrete Research, 2001, 31(9), 1333.
79 Li X H, Wang J, Duan Y. Journal of Hebei University of Engineering(Natural Science Edition), 2014(4), 17 (in Chinese).
李向辉, 汪健, 段宇. 河北工程大学学报(自然科学版), 2014(4), 17.
80 Xiao J Z, Song Z W, Zhang F. Journal of Building Materials, 2010, 13(1), 5 (in Chinese).
肖建庄, 宋志文, 张枫. 建筑材料学报, 2010, 13(1), 5.
81 Yang Z H, Li T T, Yu L. Journal of Building Materials, 2020, 23(2), 6 (in Chinese).
杨正宏, 李婷婷, 于龙. 建筑材料学报, 2020, 23(2), 6.
82 Hu Q. New Building Materials, 2018, 45(11), 3 (in Chinese).
胡勤. 新型建筑材料, 2018, 45(11), 3.
83 Zhou S E, Lu Z Y, Yan Y. Materials Reports, 2009, 23(6), 6(in Chinese).
周顺鄂, 卢忠远, 严云. 材料导报, 2009, 23(6), 6.
84 Dhasindrakrishna K, Pasupathy K, Ramakrishnan S, et al. Cement and Concrete Composites, 2021, 116, 103886.
85 Wang W T, Ma Q Y, Bai M, et al. Science Technology and Engineering, 2016, 16(22), 95 (in Chinese).
王文涛, 马芹永, 白梅, 等. 科学技术与工程, 2016, 16(22), 95.
85 Li F F, Zhang Z P. China Concrete and Cement Products, 2014(12), 5 (in Chinese).
李飞飞, 张泽平. 混凝土与水泥制品, 2014(12), 5.
87 National Railway Administration of People's Republic of China. TB 10003-2016, Code for design of railway tunnels, China Railway Publishing House, China, 2017 (in Chinese).
国家铁路局. TB 10003-2016, 铁路隧道设计规范, 中国铁道出版社, 2017.
88 Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical specification for shotcrete application, China Architecture and Building Press, China, 2016 (in Chinese).
中华人民共和国住房和城乡建设部. JGJ/T 273-2016 喷射混凝土应用技术规程, 中国建筑工业出版社, 2016.
89 Administration for Market Regulation of Qinghai Province. DB 63/T 1976-2021 Technical specification for secondary lining concrete construction of highway tunnel in cold region, China, 2016 (in Chinese).
青海省市场监督管理局. DB 63/T 1976-2021 寒区公路隧道二次衬砌混凝土施工技术规范, 2016.
[1] 董仕豪, 韩森, 宿金菲, 陈德, 苏会锋. 沥青路面表面纹理三维评价方法及其计算边界条件分析[J]. 材料导报, 2024, 38(18): 23050210-9.
[2] 龚芳媛, 拜佳威, 陈祎, 程雪佼, 王书岳, 邓锐. 沥青混合料中集料迁移的表征方法与评价指标综述[J]. 材料导报, 2024, 38(11): 22100126-14.
[3] 舒修远, 乔宏霞, 曹锋, 崔丽君. 青稞秸秆灰对氯氧镁水泥砂浆粘结强度的影响[J]. 材料导报, 2023, 37(23): 22040311-6.
[4] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[5] 王伟, 霍建勋, 曾鲁平, 刘伟, 王育江. 单层衬砌喷射混凝土层间力学特性与界面抗渗性能研究[J]. 材料导报, 2023, 37(15): 22010218-7.
[6] 胡时, 蔡海兵, 马祖桥, 袁助, 丁祖德. 不同加载速率下饱水高延性喷射混凝土的单轴压缩试验[J]. 材料导报, 2022, 36(8): 21090227-10.
[7] 崔雨萌, 张宇峰. 调湿材料吸放湿性能评价方法综述[J]. 材料导报, 2022, 36(24): 21040201-8.
[8] 王家赫. 喷射混凝土水化度的试验与理论模型研究[J]. 材料导报, 2022, 36(23): 21030064-5.
[9] 陈飞, 张林艳, 封基良, 马永, 赵雁斌. 沥青混合料低温抗裂性能试验方法研究进展[J]. 材料导报, 2021, 35(z2): 127-137.
[10] 王友德, 史涛, 夏敏, 徐善华. 基于形貌的结构钢锈蚀评价指标及提取方法[J]. 材料导报, 2021, 35(16): 16138-16143.
[11] 王家滨, 许云喆, 张凯峰, 王斌. 硝酸侵蚀/碳化交替作用下衬砌喷射混凝土的中性化研究及预测模型[J]. 材料导报, 2020, 34(8): 8058-8063.
[12] 王家滨, 王斌, 张凯峰, 李恒. 盐冻损伤喷射混凝土衬砌结构氯离子扩散及其模型[J]. 材料导报, 2020, 34(16): 16055-16061.
[13] 王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
[14] 王家滨, 牛荻涛. 喷射混凝土的硝酸侵蚀:孔溶液H+与NO3-的扩散规律及侵蚀机理[J]. 材料导报, 2019, 33(6): 991-999.
[15] 王家滨, 牛荻涛, 何晖. 多因素作用衬砌喷射混凝土中性化及预测模型[J]. 材料导报, 2019, 33(24): 4078-4085.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed