Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (15): 101-107    https://doi.org/10.11896/j.issn.1005-023X.2017.015.015
  材料综述 |
泡沫铝三明治板的研究与应用进展*
刘彦强, 樊建中, 马自力, 杨必成, 聂俊辉, 魏少华, 郝心想, 邓凡
北京有色金属研究总院,国家有色金属复合材料工程技术研究中心,北京 100088;
Progress in Research and Application of Aluminum Foam Sandwich Panels
LIU Yanqiang, FAN Jianzhong, MA Zili, YANG Bicheng, NIE Junhui, WEI Shaohua, HAO Xinxiang, DENG Fan
National Engineering & Technology Research Center for Nonferrous Metal Matrix Composites, General Research Institute for Nonferrous Metals, Beijing 100088;
下载:  全 文 ( PDF ) ( 1689KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 泡沫铝三明治板(Aluminum foam sandwich,AFS)是基于泡沫铝材料开发的一类材料-结构一体化的先进多孔复合结构。AFS是交通运输、建筑以及航空航天等装备结构轻量化的重要材料,具有广阔的应用前景。概述了AFS的几类制备技术的基本原理和研究现状,着重分析了复合预制体制备、合金成分、AFS发泡成型工艺等关键环节中存在的理论和技术难点。介绍了AFS作为结构材料和功能材料的典型应用案例;最后总结提出了AFS材料研究和工程化技术开发的关键点与突破途径。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘彦强
樊建中
马自力
杨必成
聂俊辉
魏少华
郝心想
邓凡
关键词:  泡沫铝  三明治复合板  粉末冶金  熔体发泡    
Abstract: Aluminum foam sandwich (AFS) panel is an advanced material-structure integral cellular composite structure based on Al foam. AFS panel has extensive applications in transportation, architectural and aerospace industry, which is looked forward to reduce the structures weight of devices. Principle and current status of the producing techniques are overviewed, based on which, particularly, several scientific and technical obstacles on the fabrication of composite precursor, designing of alloy constituent, in-situ foaming process etc. are discussed. Then, some representative applications of AFS as both structural and functional materials are introduced. In the end, both the challenges and keynotes on materials investigation and technique developments are proposed.
Key words:  aluminum foam    sandwich panel    powder metallurgy    melt foaming
出版日期:  2017-08-10      发布日期:  2018-05-04
ZTFLH:  TG146.2  
基金资助: *北京市科技新星计划项目(Z171100001117067)
作者简介:  刘彦强:男,1982年生,博士,高级工程师,研究方向为铝基复合材料、多孔金属材料与复合结构 E-mail:lyq9757@163.com
引用本文:    
刘彦强, 樊建中, 马自力, 杨必成, 聂俊辉, 魏少华, 郝心想, 邓凡. 泡沫铝三明治板的研究与应用进展*[J]. 《材料导报》期刊社, 2017, 31(15): 101-107.
LIU Yanqiang, FAN Jianzhong, MA Zili, YANG Bicheng, NIE Junhui, WEI Shaohua, HAO Xinxiang, DENG Fan. Progress in Research and Application of Aluminum Foam Sandwich Panels. Materials Reports, 2017, 31(15): 101-107.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.015.015  或          https://www.mater-rep.com/CN/Y2017/V31/I15/101
1 Ashby M F, Evans A, Fleck N A, et al. Metal foams: A design guide [M]. Boston: Butterworth-Heinemann,2000:1.
2 Banhart J. Manufacture, characterisation and application of cellular metals and metal foams[J]. Prog Mater Sci,2001,46(6):559.
3 Lu T J, He D P, Chen C Q, et al. The multi-functionality of ultra-light porous metals and their applications[J]. Adv Mechan,2006,36(4):517(in Chinese).
卢天健, 何德坪, 陈常青,等. 超轻多孔金属材料的多功能特性及应用[J]. 力学进展,2006,36(4):517.
4 Yu C J, Eifert H H, Banhart J, et al. Metal foams[J]. Adv Mater Processes,1998,154(5):45.
5 Srivastava V C, Sahoo K L. Processing, stabilization and applications of metallic foams. Art of science[J]. Mater Sci-Poland,2007,25(3):733.
6 Garcíamoreno F. Commercial applications of metal foams:Their properties and production[J]. Materials,2016,9(2):85.
7 Jiang B, Zhao N Q. Preparation and application progression of aluminum foam[J]. Heat Treatment Metals,2005, 30(6):36.
姜斌, 赵乃勤. 泡沫铝的制备方法及应用进展[J]. 金属热处理,2005,30(6):36.
8 Wang Y W, Xia Y, Wang Z P, et al. Research status on application of aluminum foam[J]. Mater Rev:Rev,2013,27(8): 132.
王应武, 夏宇, 王志平, 等. 泡沫铝材料应用研究现状[J]. 材料导报:综述篇,2013,27(8):132.
9 Harte A M, Fleck N A, Ashby M F. Sandwich panel design using aluminum alloy foam[J]. Adv Eng Mater,2000, 2(4):219.
10 Banhart J, Seeliger H W. Aluminium foam sandwich panels: Manufacture, metallurgy and applications[J]. Adv Eng Mater, 2008,10(9):793.
11 Banhart J, Seeliger H. Recent trends in aluminum foam sandwich technology[J]. Adv Eng Mater,2012,14(12):1082.
12 Wang M, Wang L C. Research status and development prospects of aluminum foam and composite structures[J]. Mater Rev:Rev,2015,29(3):81(in Chinese).
王淼, 王录才. 泡沫铝及其复合结构的制备和应用现状[J]. 材料导报:综述篇,2015,29(3):81.
13 Hao Q, Qiu S, Hu Y. Development on preparation technology of aluminum foam sandwich panels[J]. Rare Metal Mater Eng,2015,44(3):548.
14 Seeliger H W. Manufacture of aluminum foam sandwich (AFS) components[J]. Adv Eng Mater,2002,4(10):753.
15 Seeliger H W. Aluminium foam sandwich (AFS) ready for market introduction[J]. Adv Eng Mater,2004,6(6):448.
16 Banhart J. Light metal foams-history of innovation and technological challenges [J]. Adv Eng Mater,2013,15(3):82.
17 Degischer H P, Kriszt B. Handbook of cellular metals: Production, processing, applications [M]// Korner C, Singer R F. Foaming processes for Al. Weinheim: Wiley-VCH,2003:8.
18 Zuo X Q, Kennedy A R, Bi Y S, et al. Fabrication and cell structure refining mechanism of aluminum foam with fine cell structure[J]. Chiniese J Nonferrous Metals,2009,19(4):683.
左孝青, Kennedy A R, 毕业顺,等.小孔径泡沫铝的制备及孔结构细化机理[J]. 中国有色金属学报,2009,19(4):683.
19 Shang J T, Chu X, He D. Preparation of three-dimensional shaped aluminum alloy foam by two-step foaming[J]. Mater Sci Eng B,2008,151(2):157.
20 Baumeister J, Schrader H. Methods for manufacturing foamable metal bodies: US, 5151246 [P].1991-09-29.
21 Baumgärtner F, Duarte I, Banhart J. Industrialization of powder compact foaming process[J]. Adv Eng Mater,2000, 2(4):168.
22 Vukobratovich D. Ultra-lightweight optics for laser communications[C]// Free-Space Laser Communication Technologies Ⅱ. Los Ange-les,1990:178.
23 Geiger A L. Metal-matrix composite foam: A new material for sandwich-construction mirrors[J]. Proceedings of SPIE-The Internatio-nal Society for Optical Engineering,1990,1303:546.
24 Wan L, Huang Y, Lv S, et al. Fabrication and interfacial characte-rization of aluminum foam sandwich via fluxless soldering with surface abrasion[J]. Compos Structures,2015,123(3):366.
25 Markaki A E, Clyne T W. Characterisation of impact response of metallic foam/ceramic laminates[J]. Mater Sci Technol,2000,16(7-8):785.
26 Markaki A E, Clyne T W. Energy absorption during failure of la-yered metal foam/ceramic laminates[J]. Mater Sci Eng A,2002,323(1-2):260.
27 Gergely V, Simancík F, Matthams T J, et al. Preparation of cera-mic/metal foam laminates using an in situ foaming technique [C]// ICCM-12. Paris,1999:589.
28 Baumeister J, Banhart J, Weber M. Verfahren zur herstellung eines metallischen verbundwerkstoffs (process for manufacturing metallic composite materials), DE 4426627 C2[P].1994.
29 Luo H, Liu Y, et al. Preparation of aluminum foam sandwich reinforced by steel sheets [J]. Procedia Mater Sci,2014,4(4):39.
30 Lin H, Luo H, et al. Diffusion bonding in fabrication of aluminum foam sandwich panels[J]. J Mater Process Technol,2016,230:35.
31 Wang Y, Ren X, Hou H, et al. Processing and pore structure of aluminium foam sandwich[J]. Powder Technol,2015, 275:344.
32 Zu G Y,Zhang M, Yao G C, et al. Preparing aluminum foam sandwich by the roll-bonding-powder metallurgy foaming technique[J]. Chinese J Process Eng,2006,6(6):973(in Chinese).
祖国胤, 张敏, 姚广春,等. 轧制复合-粉末冶金发泡工艺制备泡沫铝夹心板[J]. 过程工程学报,2006,6(6):973.
33 梁晓军, 朱勇刚, 陈锋,等. 泡沫铝三明治结构的制备[J]. 江苏冶金,2004,32(1):7.
34 Banhart J, et al. Real time X-ray investigation of aluminum foam sandwich production[J]. Adv Eng Mater,2001,3(6):507.
35 Beck T, Lähe D, Baumgärtner F. The fatigue behavior of an alumi-nium foam sandwich beam under alternating bending[J]. Adv Eng Mater,2002,4(10):787.
36 Duarte I, Banhart J. A study of aluminium foam formation-kinetics and microstructure[J]. Acta Mater,2000, 48(9):2349.
37 Helwig H M, Garcia-Moreno F, Banhart J. A study of Mg and Cu additions on the foaming behaviour of Al-Si alloys[J]. J Mater Sci,2011,46(15):5227.
38 Jiménez C, et al. Improvement of aluminium foaming by powder consolidation under vacuum[J]. Scripta Mater,2009,61(5):552.
39 Sun Qi. Fabrication, characterization and properties of Al foam by powder metallurgy[D]. Beijing:General Research Institute for Nonferrous Metals,2016(in Chinese).
孙琦. 粉末冶金泡沫铝的制备工艺研究[D]. 北京:北京有色金属研究总院,2016.
40 Asavavisithchai S, Kennedy A R. Effect of powder oxide content on the expansion and stability of PM-route Al foams[J]. J Colloid Interface Sci,2006,297(2):715.
41 Körner C, Arnold M, Singer R F. Metal foam stabilization by oxide network particles[J]. Mater Sci Eng A,2005, 396(1-2):28.
42 Dudka A, Garcia-Moreno F, et al. Structure and distribution of oxides in aluminium foam[J]. Acta Mater, 2008,56(15):3990.
43 Ptashnik W J. Method for producing metal alloy foams:US, 3758291 [P].1971-10-29.
44 Gergely V, Clyne T W. The FORMGRIP process: Foaming of reinforced metals by gas release in precursors[J]. Adv Eng Mater,2000,2(4):175.
45 Gergely V, Curran D C, Clyne T W. The FOAMCARP process: Foaming of aluminium MMCs by the chalk-aluminium reaction in precursors[J]. Compos Sci Technol,2003,63(16):2301.
46 Zhang Q, Lu T, He S, et al. Control of pore morphology in close-celled aluminum foams[J]. Academic J Xi’an Jiaotong University,2007,41(3):255(in Chinese).
张钱城, 卢天健, 何思渊,等. 闭孔泡沫铝的孔结构控制[J]. 西安交通大学学报,2007,41(3):255.
47 Korner C, Hirschmann M, Wiehler H. Integral foam moulding of light metals[J]. Mater Trans,2006, 47(9):2188.
48 Hartmann J, et al. Aluminum integral foams with near-microcellular structure [J]. Adv Eng Mater,2011,13(11):1050.
49 URL: en.metalfoam.de.
50 Banhart J. Aluminium foams for lighter vehicles[J]. Int J Vehicle Design,2005,37(2-3):114.
51 Degischer H P, Kriszt B. Handbook of cellular metals: Production, processing, applications [M]// Haberling C. Service properties and exploitability. Weinheim: Wiley-VCH,2003:299.
52 Claar T D, et al. Ultra-lightweight aluminum foam materials for automotive applications[J]. Int J Powder Metall,2000,36(6):61.
53 Baumeister J, Weise J, Hirtz E, et al. Applications of aluminium hybrid foam sandwiches in battery housings for electric vehicles[J]. Procedia Mater Sci,2014,4(12):317.
54 Schwingel D, Seeliger H W, Vecchionacci C, et al. Aluminium foam sandwich structures for space applications[J]. Acta Astronautica,2007,61(1-6):326.
55 Gama B A, et al. Aluminum foam integral armor: A new dimension in armor design[J]. Compos Struct,2001,52(3-4):381.
56 姚广春,等. 泡沫铝材料[M]. 北京: 科学出版社,2013:4.
57 Feng Y, Zhen H W, Zhu Z G, et al. Electromagnetic shielding effectiveness of closed-cell aluminum alloy foams[J]. Chinese J Nonferrous Metals,2004,14(1):33(in Chinese).
凤仪, 郑海务, 朱震刚,等. 闭孔泡沫铝的电磁屏蔽性能[J]. 中国有色金属学报,2004,14(1):33.
58 Chen S, et al. Applications of open-cell and closed-cell metal foams for radiation shielding[J]. Procedia Mater Sci,2014,4:293.
59 Smith L L. Cookware vessel: US, 6605368 B2[P].2003-08-12.
[1] 刘雄飞, 和西民. 低应变率荷载作用下梯度泡沫铝力学性能研究[J]. 材料导报, 2023, 37(7): 22010266-7.
[2] 郭辉, 冯晶晶, 陈玉, 孙亚斌, 邱爽. 聚脲涂覆泡沫铝压缩力学性能及吸能特性研究[J]. 材料导报, 2023, 37(23): 22120195-7.
[3] 吴嘉伦, 夏敏, 王军峰, 葛昌纯. 电极感应熔炼气雾化法制备粉末冶金增材制造原材料金属粉末的研究综述[J]. 材料导报, 2023, 37(21): 22040132-8.
[4] 张宇, 郭文龙, 梁李斯, 弥晗, 马洪月, 张自恒, 李林波. 泡沫金属及其复合结构吸声性能优化[J]. 材料导报, 2023, 37(19): 22060014-8.
[5] 杨新异, 黄群英. 球磨转速对含钆ODS钢中M23C6析出的影响研究[J]. 材料导报, 2023, 37(17): 22030003-6.
[6] 吴靓, 周子坤, 姬丽, 肖逸锋, 张乾坤. 多孔Ni-Cu-Ti电极的制备及析氢性能[J]. 材料导报, 2023, 37(13): 21100074-9.
[7] 颉芳霞, 黄家兵, 曹澍, 杨豪, 何雪明. 钛合金羟基磷灰石骨植入复合材料的研究进展[J]. 材料导报, 2023, 37(13): 21070222-7.
[8] 张爵灵, 王林山, 郑逢时, 胡强, 汪礼敏. 粉末冶金多孔铝的研究进展[J]. 材料导报, 2023, 37(12): 21100151-8.
[9] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[10] 解传滨, 吴皓然, 王慧聪, 刘景叶, 张修海. Ni-xCr-ySc(x=5,15,25,35;y=0,1)合金的高温抗氧化性能[J]. 材料导报, 2022, 36(23): 21040192-5.
[11] 颉芳霞, 杨豪, 黄家兵, 何雪明, 俞经虎. 粉末冶金Ti-xNb-5Sn骨科合金的摩擦学行为[J]. 材料导报, 2022, 36(21): 21050088-5.
[12] 杨旭东, 刘冠甫, 胡琪, 邹田春, 沙军威, 纵荣荣. 泡沫铝疲劳性能研究进展[J]. 材料导报, 2022, 36(2): 20030052-5.
[13] 郭岩岩, 历长云, 冀国良, 许磊, 王亚松, 米国发. 粉末致密化过程数值模拟研究现状[J]. 材料导报, 2022, 36(18): 20080161-7.
[14] 杨海屹, 张莎莎, 姚正军, 刘子利. 电子束重熔对铁基粉末冶金表面耐磨性能的影响[J]. 材料导报, 2022, 36(17): 20100136-5.
[15] 王蕊, 王林山, 石韬, 周超, 汪礼敏. 谐波减速器用粉末冶金刚轮材料的摩擦磨损性能研究[J]. 材料导报, 2022, 36(13): 20120260-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed