Please wait a minute...
材料导报  2023, Vol. 37 Issue (19): 22060014-8    https://doi.org/10.11896/cldb.22060014
  金属与金属基复合材料 |
泡沫金属及其复合结构吸声性能优化
张宇1, 郭文龙1, 梁李斯1,*, 弥晗2, 马洪月2, 张自恒3, 李林波1,*
1 西安建筑科技大学冶金工程学院,西安 710055
2 陕西省冶金工程技术研究中心,西安 710055
3 陕西省黄金与资源重点实验室,西安 710055
Optimization of Sound Absorption Performance of Metal Foam and Its Composite Structure
ZHANG Yu1, GUO Wenlong1, LIANG Lisi1,*, MI Han2, MA Hongyue2, ZHANG Ziheng3, LI Linbo1,*
1 College of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 Shaanxi Metallurgical Engineering Technology Research Center, Xi'an 710055, China
3 Shaanxi Provincial Key Laboratory of Gold and Resources, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 17598KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了改善单层泡沫金属低频的吸声效果并拓宽其吸声频带,本工作将不同结构参数泡沫铝和泡沫镍的单层试样按其吸声峰值所对应频率段进行组合,并交换其前后顺序进行吸声性能研究。利用响应曲面分析法得到吸声性能最优的复合结构的构建参数,并通过实验进行验证。结果表明,将泡沫铝与泡沫镍进行复合并添加背后空腔,组成双层多孔-共振式复合结构。泡沫铝在前的复合结构表现出共振型吸声体的特性,而泡沫镍在前的复合结构表现出多孔材料吸声的特性。复合结构在全频率范围内的吸声效果良好,且单层结构彼此耦合时出现多个吸收峰,其中心频率向低频区移动。泡沫镍在前的复合结构中高频吸声效果优于泡沫铝在前的复合结构。响应曲面分析的结果表明,当泡沫镍厚度取20 mm靠近声源放置、泡沫铝厚度取15 mm靠近刚性壁放置、两者之间添加34 mm的空腔、泡沫铝和刚性壁之间添加28 mm的空腔时,组合具有良好的吸声性能,可以准确获得平均吸声系数达0.920的最优复合结构。实验采用传递函数法测量该构建参数下复合结构的吸声系数,得出测量值为0.916,与响应曲面法得到的预测值基本一致。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张宇
郭文龙
梁李斯
弥晗
马洪月
张自恒
李林波
关键词:  泡沫铝  泡沫镍  复合结构  吸声  响应曲面  优化    
Abstract: In order to improve the low-frequency sound absorption effect of single-layer metal foam and widen its sound absorption frequency band, this work combined the single-layer samples of aluminum foam and nickel foam with different structural parameters according to the frequency bands corresponding to their sound absorption peaks, and exchanged their order before and after for conducting sound absorption performance studies. The construction parameters of the composite structure with the optimal sound absorption performance were obtained by the response surface analysis method, and verified by experiments. The results show that the double-layer porous-resonant composite structure is formed by compounding aluminum foam and nickel foam and adding a back cavity. The composite structure with aluminum foam in front shows the characteristics of resonant sound absorber, while the composite structure with nickel foam in front shows the sound absorption characteristics of porous material. The composite structure has a good sound absorption effect in the whole frequency range, and when the single-layer structures are coupled with each other, multiple absorption peaks appear, and the center frequency moves to the low frequency region. The high-frequency sound absorption effect of the composite structure with nickel foam is better than that of the composite structure with foam aluminum. The results of the response surface analysis show that when the thickness of nickel foam is 20 mm close to the sound source, the thickness of foam aluminum is 15 mm close to the rigid wall, a 34 mm cavity is added between the two, and a 28 mm cavity is added between the foam aluminum and the rigid wall, the combination has good performance. The sound absorption performance can accurately obtain the optimal composite structure with an average sound absorption coefficient of 0.920. In the experiment, the transfer function method was used to measure the sound absorption coefficient of the composite structure under the construction parameters, and the measured value was 0.916, which was basically consistent with the predicted value obtained by the response surface method.
Key words:  foam aluminum    nickel foam    composite structure    sound absorption    response surface    optimization
出版日期:  2023-10-10      发布日期:  2023-09-28
ZTFLH:  TB34  
  TB535  
基金资助: 陕西省教育厅重点实验室项目(Z20200151);国家自然科学基金青年项目(51404187)
通讯作者:  *梁李斯,西安建筑科技大学冶金工程学院副教授、硕士研究生导师。2006年本科毕业于东北师范大学环境科学学院,2011年在东北大学有色金属冶金专业取得博士学位。2011年至今在西安建筑科技大学冶金工程学院从事泡沫金属及吸声材料的研究。近年来,在泡沫金属及吸声材料领域出版专著1部,发表论文20余篇,包括Applied Acoustics、Nanoscience and Nanotechnology Letters、Materials Science Forum、《材料导报》《功能材料》《有色金属》等。 44406200@qq.com;李林波,西安建筑科技大学冶金工程学院院长、教授、博士研究生导师。1995年本科毕业于西安建筑科技大学冶金学院,2011年在西安建筑科技大学材料学专业取得博士学位。1998年至今担任西安建筑科技大学冶金工程专业教师。中国有色金属学会环境保护学术委员会委员、全国安全生产标准化技术委员会第一届冶金有色安全分技术委员会、陕西省有色金属学会理事。主要从事冶金新工艺及理论研究、冶金过程资源综合利用与环境保护、冶金过程清洁生产技术、电化学冶金、冶金过程计算等的研究。发表学术论文40余篇,编著教材4部,授权发明专利10项。 yj-lilinbo@xauat.edu.cn   
作者简介:  张宇,2019年6月在西安建筑科技大学冶金工程专业获得工学学士学位。现为西安建筑科技大学冶金工程学院硕士研究生,在梁李斯副教授的指导下进行研究。目前主要研究领域为泡沫金属及其复合结构的吸声性能。
引用本文:    
张宇, 郭文龙, 梁李斯, 弥晗, 马洪月, 张自恒, 李林波. 泡沫金属及其复合结构吸声性能优化[J]. 材料导报, 2023, 37(19): 22060014-8.
ZHANG Yu, GUO Wenlong, LIANG Lisi, MI Han, MA Hongyue, ZHANG Ziheng, LI Linbo. Optimization of Sound Absorption Performance of Metal Foam and Its Composite Structure. Materials Reports, 2023, 37(19): 22060014-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060014  或          http://www.mater-rep.com/CN/Y2023/V37/I19/22060014
1 Qin X C, Ni A C, Han Y, et al. China Environmental Science, 2020, 40(12), 5493 (in Chinese).
秦晓春, 倪安辰, 韩莹, 等. 中国环境科学, 2020, 40(12), 5493.
2 Filippo Crea. European Heart Journal, 2021, 42(8), 801.
3 Liang L S, Zhang X, Song Y F, et al. Materials Reports, 2016, 30(17), 64 (in Chinese).
梁李斯, 张杏, 宋亦非, 等. 材料导报, 2016, 30(17), 64.
4 Ao Q B, Wang J Z, Li Y, et al. Journal of Functional Materials, 2020, 51(12), 12045 (in Chinese).
敖庆波, 王建忠, 李烨, 等. 功能材料, 2020, 51(12), 12045.
5 Yang X D, Wang L C. Foundry Equipment & Technology, 2013(6), 55 (in Chinese).
杨晓东, 王录才. 铸造设备与工艺, 2013(6), 55.
6 Chen M Y, Ji Z, Jia C C, et al. Powder Metallurgy Technology, 2019, 37(1), 68 (in Chinese).
陈明营, 纪箴, 贾成厂, 等. 粉末冶金技术, 2019, 37(1), 68.
7 Sharma V, Ghose J, Kumar S. Journal of the Institution of Engineers, 2012, 93 (1), 33.
8 Xia X C, Zhang Z, Zhao W M, et al. Journal of Materials Science & Technology, 2017, 33(11), 1227.
9 Opiela K C, Zieliński T G, Dvorák T, et al. Applied Acoustics, 2021, 174.
10 Zhang Y F, Ma L J, Cui Z X. Noise and Vibration Control, 2001(2), 30 (in Chinese).
张永锋, 马玲俊, 崔昭霞. 噪声与振动控制, 2001(2), 30.
11 Fan X L, Chen X, Liu X N, et al. The Chinese Journal of Nonferrous Metals, 2011, 21(6), 1320 (in Chinese).
范雪柳, 陈祥, 刘兴男, 等. 中国有色金属学报, 2011, 21(6), 1320.
12 Wang H, Zhou X Y, Long B, et al. The Chinese Journal of Nonferrous Metals, 2013, 23(4), 1034 (in Chinese).
王辉, 周向阳, 龙波, 等. 中国有色金属学报, 2013, 23(4), 1034.
13 Liu P S, Qing H B. Chinese Journal of Materials Research, 2015, 29(5), 346 (in Chinese).
刘培生, 顷淮斌. 材料研究学报, 2015, 29(5), 346.
14 Peng K, Zhou J Z, Shen X M. Equipment Manufacturing Technology, 2017(4), 56 (in Chinese).
彭康, 周建钊, 沈新民. 装备制造技术, 2017(4), 56.
15 Wang X F, Wang X F, Wei X, et al. Materials Science and Technology, 2011, 27(4), 800.
16 Navacerrada M A, Fernández P, Díaz C, et al. Applied Acoustics, 2013, 74(4), 496.
17 Liu G F, Han B K, Bao H Q. In:International Symposium on Materials Application and Engineering (SMAE). Chiang Mai, DOI:10. 1051/matecconf/20166705007.
18 Zhu M J, Zhou S H, Wang Q D, et al. Hot Working Technology, 2017, 46(12), 21 (in Chinese).
朱梦蛟, 周素洪, 王渠东, 等. 热加工工艺, 2017, 46(12), 21.
19 Liu P S, Liang K M.Materials Science and Technology, 2000, 16 (5), 575.
20 Chan N, Evans K E. Journal of Materials Science, 1997, 32(21), 5725.
[1] 杨平安, 刘中邦, 李锐, 屈正微, 黄鑫, 寿梦杰, 杨健健, 熊雨婷. 电阻式柔性触觉传感器的研究进展[J]. 材料导报, 2023, 37(9): 21060169-14.
[2] 邵慧龙, 费志方, 李肖华, 赵爽, 李昆锋, 杨自春. 玻璃微珠/PI气凝胶复合材料的制备与吸声性能研究[J]. 材料导报, 2023, 37(9): 21090097-6.
[3] 郑伍魁, 赵丹, 朱毅, 张静洁, 杨雨玄, 王飞, 崔添, 李辉. 陶粒工程应用的趋势分析及研究进展[J]. 材料导报, 2023, 37(7): 21120251-12.
[4] 刘雄飞, 和西民. 低应变率荷载作用下梯度泡沫铝力学性能研究[J]. 材料导报, 2023, 37(7): 22010266-7.
[5] 杜鹏, 刘洁, 张静, 马婕妤, 耿艳艳, 曹丰. 木质素碳点的优化合成及用于金属离子的检测[J]. 材料导报, 2023, 37(5): 21080027-6.
[6] 罗晓宇, 冯曰海, 赵鑫, 刘思余. 镁合金摆动多道增材层成形特征参数与尺寸控制规律研究[J]. 材料导报, 2023, 37(18): 22040093-7.
[7] 蒋瑞鑫, 牛宗伟, 史程程, 任智强, 韩国峰, 杨保伟, 王文宇, 杨善林, 陈贺连. 镍基高温合金载能束增材修复技术研究现状[J]. 材料导报, 2023, 37(15): 21120141-1.
[8] 刘卫东, 米国发, 李雷, 陈晓文, 潘雨佳, 翟芳艺, 苗浩伟. 辅助处理对激光熔覆层组织和性能影响的研究进展[J]. 材料导报, 2023, 37(15): 21120139-7.
[9] 梁梦, 黎振华, 刘美红, 罗心磊, 解靖伟. 选区激光熔化Fe-10Cu合金成形工艺优化研究[J]. 材料导报, 2023, 37(14): 21110123-7.
[10] 徐晨辉, 孔栋, 况志祥, 陈卓, 马燕, 邹富祥, 陈昕, 胡晓明, 冯波, 樊希安. 高性能新型Mg3(Sb,Bi)2基热电材料的发展现状[J]. 材料导报, 2023, 37(13): 21100209-10.
[11] 陈远豪, 肖黎, 梁昌兴, 罗月婷, 龚恒翔. 基于SnO2∶Sb薄膜沉积工艺参数优化的支持向量回归分析[J]. 材料导报, 2023, 37(11): 21120097-6.
[12] 王玉龙, 王周福, 王玺堂, 刘浩, 马妍. 连铸用铝碳耐火材料微结构调控研究进展[J]. 材料导报, 2023, 37(1): 20090128-10.
[13] 林志玮, 赵兴科, 赵增磊, 王世泽. 脉冲激光热爆箔法制备金属粉末试验及工艺优化[J]. 材料导报, 2022, 36(Z1): 21080257-6.
[14] 谢忠洲, 李钟昊, 逯浩, 王莹, 刘永生. 纳米复合结构对VO2相变特性的影响[J]. 材料导报, 2022, 36(8): 20080150-10.
[15] 李正月, 李东泽, 孙秀英, 蔡沛文, 廖雨青, 陈秀琼, 颜慧琼, 林强. 球磨辅助海藻酸钠降解工艺参数的优化及其产物的结构和性能[J]. 材料导报, 2022, 36(6): 21010003-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed