Please wait a minute...
材料导报  2023, Vol. 37 Issue (7): 21100066-5    https://doi.org/10.11896/cldb.21100066
  高分子与聚合物基复合材料 |
改性纳米硅颗粒强化高温泡沫的性能及机理研究
郑家桢1,2, 裴海华1,2, 张贵才1,2,*, 单景玲1,2, 蒋平1,2
1 中国石油大学(华东)石油工程学院,山东 青岛 266580
2 中国石油大学(华东)非常规油气开发教育部重点实验室,山东 青岛 266580
Study on Performance and Mechanism of High-temperature Foam Stabilized by Modified Silicon Nanoparticles
ZHENG Jiazhen1,2, PEI Haihua1,2, ZHANG Guicai1,2,*, SHAN Jingling1,2, JIANG Ping1,2
1 College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
2 Key Laboratory of Unconventional Oil & Gas Development, Ministry of Education, China University of Petroleum (East China), Qingdao 266580, Shandong, China
下载:  全 文 ( PDF ) ( 22876KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高温环境下常规两相泡沫的泡沫稳定性很差,不能满足高温油藏生产需求。本工作以改性纳米硅颗粒(NP)强化α-烯烃磺酸钠(AOS)的泡沫性能,通过Waring Blender法对NP强化泡沫体系的泡沫性能进行评价,研究了NP稳定AOS泡沫的机理和NP强化泡沫高温下的封堵能力。结果表明,2.0%NP强化的0.5%AOS泡沫具有十分稳定的泡沫性能,高温热老化处理后泡沫性能稳定;其稳泡机理在于NP能在气液界面上形成不可逆吸附,同时NP能与AOS分子发生吸附,有效提高起泡溶液的黏度、表面扩张弹性模量和储能模量,增强液膜强度,延缓泡沫的排液、歧化和聚并;NP强化泡沫在1 000 mD和3 000 mD渗透率时均具有优秀的封堵性能,其阻力因子远大于AOS泡沫,具有高温调驱应用潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑家桢
裴海华
张贵才
单景玲
蒋平
关键词:  多相泡沫  纳米硅颗粒  流变性  表面扩张黏弹性  调驱剂    
Abstract: Conventional two-phase foams have poor foam stability under high temperature environments and cannot meet the production requirements of high temperature reservoirs. In this work, modified silicon nanoparticles (NP) were used to strengthen the foam performance of sodium α-olefin sulfonate. The Waring Blender method was used to evaluate the foam performance of NP strengthened foam, the mechanism of NP enhance foam stability and the sealing ability of foam at high temperature were studied. The results show that the 0.5% AOS foam reinforced with 2.0% NP has very stable foam performance, and the foam performance is stable after high temperature heat aging treatment. Its foam stabilization mechanism is that NP can form irreversible adsorption at gas-liquid interface. Meantime, in the adsorption between NP and AOS molecules, which has a small effect on the surface tension, and effectively increases the viscosity, surface expansion elastic modulus and storage modulus of the AOS solution to delay the drainage, disproportionation and coalescence of foam. The foam has excellent plugging performance at both 1 000 mD and 3 000 mD permeability, and its resistance factor is much larger than that of AOS foam, which has the potential for high-temperature control and flooding applications.
Key words:  multiphase foam    modified silicon nanoparticles    rheological property    surface expansion viscoelasticity    control and flood agent
出版日期:  2023-04-10      发布日期:  2023-04-07
ZTFLH:  TE 357  
基金资助: 国家重点研发计划(2018YFA0702400);山东省自然科学基金(ZR2019MEE085)
通讯作者:  * 张贵才,中国石油大学(华东)石油工程学院教授、博士研究生导师。1988年中国石油大学应用化学专业本科毕业,2005年西南石油学院石油工程专业博士毕业。目前主要从事化学驱理论与方法、油田化学品开发与应用技术等方面的研究工作。发表论文180余篇,包括Fuel、Energy Fuels、《中国科学B辑 化学》《石油学报》等。zhanggc@upc.edu.cn   
作者简介:  郑家桢,2019年6月于燕山大学获得工学学士学位。现为中国石油大学(华东)石油工程学院硕士研究生,在张贵才教授的指导下进行研究。目前主要研究领域为采油化学和提高采收率。
引用本文:    
郑家桢, 裴海华, 张贵才, 单景玲, 蒋平. 改性纳米硅颗粒强化高温泡沫的性能及机理研究[J]. 材料导报, 2023, 37(7): 21100066-5.
ZHENG Jiazhen, PEI Haihua, ZHANG Guicai, SHAN Jingling, JIANG Ping. Study on Performance and Mechanism of High-temperature Foam Stabilized by Modified Silicon Nanoparticles. Materials Reports, 2023, 37(7): 21100066-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100066  或          http://www.mater-rep.com/CN/Y2023/V37/I7/21100066
1 Shu Z, Pei H H, Zhang G C, et al. Oilfield Chemistry, 2020, 37(4), 697 (in Chinese).
舒展, 裴海华, 张贵才, 等. 油田化学, 2020, 37(4), 697.
2 Wang C S, Zhang L, Ju G S, et al. ACS Omega, 2020, 5(28), 17828.
3 Wu C Z, Wang S H, Sun Y B, et al. Oilfield Chemistry, 2021, 38(1), 68 (in Chinese).
吴春洲, 王少华, 孙玉豹, 等. 油田化学, 2021, 38(1), 68.
4 Zheng W, Tan X B, Jiang W D, et al. ACS Omega, 2021, 6(35), 22709.
5 Shu Z, Pei H H, Zhang G C, et al. Oilfield Chemistry, 2020, 37(1), 185 (in Chinese).
舒展, 裴海华, 张贵才, 等. 油田化学, 2020, 37(1), 185.
6 Zhao X T, Wang Q, Wang Z B, et al. Materials Reports, 2016, 30(5), 75 (in Chinese).
赵修太, 王泉, 王增宝, 等. 材料导报, 2016, 30(5), 75.
7 Zhao G, Wang X K, Dai C L, et al. Journal of Molecular Liquids, 2021, 343, 117466.
8 Lai N J, Yuan L, Du C F, et al. Speciality Petrochemicals, 2020, 37(6), 16 (in Chinese).
赖南君, 袁琳, 杜朝峰, 等. 精细石油化工, 2020, 37(6), 16.
9 Zhang C M, Yang T T, Lu G H, et al. Journal of Functional Materials, 2022, 53(10), 10180(in Chinese).
张春梅, 杨婷婷, 陆桂花, 等. 功能材料, 2022, 53(10), 10180.
10 Pei H H, Shan J L, Cao X, et al. Materials Reports, 2021, 35(13), 13227 (in Chinese).
裴海华, 单景玲, 曹旭, 等. 材料导报, 2021, 35(13), 13227.
11 Peng H, Yang F, Du H, et al. Chinese Journal of Analytical Chemistry, 2021, 49(7), 1106 (in Chinese).
彭皓, 杨方, 杜慧, 等. 分析化学, 2021, 49(7), 1106.
12 Hou J R, Wen C Y, Qu M, et al. Special Oil & Gas Reservoirs, 2020, 27(6), 47 (in Chinese).
侯吉瑞, 闻宇晨, 屈鸣, 等. 特种油气藏, 2020, 27(6), 47.
13 Zhang Y, Liu Q, Ye H, et al. Journal of Petroleum Science and Engineering, 2021, 202, 124.
14 Suleymani M, Ashoori S, Ghotbi C, et al. Chemical Engineering Research and Design, 2020, 158, 114.
15 Pattamas R, Jier S B, Uthaiporn S, et al. Journal of Dispersion Science and Technology, 2021, 42(4), 581.
16 Zhao Y H, Wang J, Lyu B L, et al. Xinjiang Petroleum Geology, 2019, 40(6), 708 (in Chinese).
赵云海, 王健, 吕柏林, 等. 新疆石油地质, 2019, 40(6), 708.
17 Li Z M, Wang P, Li S Y, et al. Journal of Southwest Petroleum University (Science & Technology Edition), 2014, 36(4), 155 (in Chinese).
李兆敏, 王鹏, 李松岩, 等. 西南石油大学学报(自然科学版), 2014, 36(4), 155.
18 Muhammad S, Siavash A, Cyrus G, et al. Chemical Engineering Research and Design, 2020, 158, 114.
19 Zhang X, Zhang T C, Jiang P, et al. Chemical Journal of Chinese Universities, 2020, 41(5), 1076 (in Chinese).
张旋, 张天赐, 蒋平, 等. 高等学校化学学报, 2020, 41(5), 1076.
20 Li Z M, Hou D W, Lu T, et al. Oilfield Chemistry, 2019, 36(3), 494 (in Chinese).
李兆敏, 侯大炜, 鹿腾, 等. 油田化学, 2019, 36(3), 494.
21 Muhammad S, Cyrus G, Siavash A, et al. Journal of Molecular Liquids, 2020, 304, 112739.
22 Li Z M, Su Q, Li S Y, et al. Oilfield Chemistry, 2013, 30(4), 625 (in Chinese).
李兆敏, 孙乾, 李松岩, 等. 油田化学, 2013, 30(4), 625.
23 Su Q, Li Z M, Li S Y, et al. Journal of China University of Petroleum (Edition of Natural Science), 2016, 40(6), 101 (in Chinese).
孙乾, 李兆敏, 李松岩, 等. 中国石油大学学报(自然科学版), 2016, 40(6), 101.
24 Wang H T, He M, Zhang Y Z, et al. Journal of Nanjing Normal University (Natural Science Edition), 2021, 44(2), 30 (in Chinese).
王洪涛, 何萌, 张玉珍, 等. 南京师大学报(自然科学版), 2021, 44(2), 30.
[1] 林欢, 石启亮, 蔡利海, 刘文言, 李万利. 聚硼硅氧烷剪切增稠凝胶的制备影响因素及其在不同温度下的流变性能研究[J]. 材料导报, 2022, 36(Z1): 21070206-6.
[2] 彭博, 凌天清, 葛豪. 纳米粒子改性橡胶沥青抗老化性能研究[J]. 材料导报, 2022, 36(20): 22090054-8.
[3] 刘芳, 王旗, 张翛, 彭义军, 刘晓东. 老化对废机油再生沥青流变特性的影响及机理[J]. 材料导报, 2022, 36(16): 22040405-6.
[4] 姚 震, 张凌波, 梁鹏飞, 王仕峰, 颜川奇. 多种湿法橡胶改性沥青的综合性能评价与改性机理研究[J]. 材料导报, 2022, 36(16): 21120124-7.
[5] 索智, 陈欢, 张奥, 聂磊. 废植物油再生沥青紫外老化机理及路用性能[J]. 材料导报, 2021, 35(Z1): 662-668.
[6] 郭翠霞, 吴张永, 王航, 朱启晨, 邹应辉. 乳液基碳化硅纳米工作液的沉降稳定性、流变性与介电性[J]. 材料导报, 2021, 35(8): 8028-8033.
[7] 郭乃胜, 俞春晖, 王淋, 金鑫, 温彦凯. PR.M/胶粉复合改性沥青流变及微观特性研究[J]. 材料导报, 2021, 35(10): 10080-10087.
[8] 王珩, 陆采荣, 刘伟宝, 梅国兴, 戈雪良, 杨虎. 砂的级配特性对砂浆流变性的影响及预测[J]. 材料导报, 2020, 34(Z2): 255-260.
[9] 侯德华, 张庆, 韩志宇, 张芳超. 基于主成分分析法的乳化沥青残留物综合性能评价[J]. 材料导报, 2020, 34(Z2): 278-282.
[10] 刘克健, 高玉龙. 一种快速固化的环氧树脂基预浸料及其性能[J]. 材料导报, 2020, 34(Z2): 576-579.
[11] 张帅, 张健. 冷冻干燥法制备有机蒙脱土及其改性沥青性能研究[J]. 材料导报, 2020, 34(4): 4037-4042.
[12] 武斌, 安晓鹏, 史才军, 魏子易, 元强. 混凝土流变特性对其稳定性及浇筑后外观质量的影响[J]. 材料导报, 2020, 34(4): 4043-4048.
[13] 张倩倩, 刘建忠, 张丽辉, 刘加平. 矿物掺合料对低水胶比浆体流变性能的影响机制研究[J]. 材料导报, 2020, 34(22): 22054-22057.
[14] 翟莹, 苗苗, 肖立鲜. 锂渣细度对掺减水剂的水泥浆体流变性能的影响[J]. 材料导报, 2020, 34(18): 18056-18059.
[15] 赵可成, 陈宇, 黄考取. 基于核壳结构缓释剂和抗氧化剂的新型复合沥青抗老化剂研究[J]. 材料导报, 2019, 33(Z2): 261-266.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed