Please wait a minute...
材料导报  2023, Vol. 37 Issue (19): 22040395-5    https://doi.org/10.11896/cldb.22040395
  金属与金属基复合材料 |
Mn在铁素体Fe-25%Cr合金中的迁移行为研究
马柯榕1, 张浩2, 张永帅2, 李坤1, 杜秀娟1, 杨雯2,*
1 太原科技大学应用科学学院,太原 030024
2 太原科技大学材料科学与工程学院,金属材料成形理论与技术山西省重点实验室,太原 030024
Study on Diffusion Behavior of Mn in Ferritic Fe-25%Cr Alloy
MA Kerong1, ZHANG Hao2, ZHANG Yongshuai2, LI Kun1, DU Xiujuan1, YANG Wen2,*
1 School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
2 Shanxi Key Laboratory of Metal Forming Theory and Technology, School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
下载:  全 文 ( PDF ) ( 10052KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铁素体合金是目前广泛应用于固体氧化物燃料电池(SOFCs)的连接体材料。掺杂Mn的Fe-Cr合金连接体会在服役过程中形成两层氧化膜,即Cr2O3和(Cr,Mn)3O4,可有效避免其高温抗氧化性不足以及Cr挥发会毒化阴极等问题。而Mn原子在Fe-Cr合金体系中的迁移对(Cr,Mn)3O4的形成至关重要,但其微观机理尚不明晰。利用基于密度泛函理论的第一性原理方法,系统研究了Mn在铁素体Fe-Cr合金表面的迁移过程,以及由内部向表面的跃迁过程。分别构建并优化了Fe-25%Cr合金的晶体模型和合金(110)表面模型,计算了Mn在(110)表面的稳定吸附位和势能面分布,并确定了Mn在表面的迁移路径。进一步结合弹性带方法计算了各种迁移路径对应的迁移势垒。结果表明,Mn原子在表面迁移路径的势垒低于0.191 eV,以及由体内向表面跃迁路径的势垒低于4.480 eV。在此基础上计算了不同迁移路径的扩散系数随温度的变化关系,可知Mn更易沿表面迁移。从微观尺度上揭示了Mn原子在铁素体Fe-Cr合金内部向表面跃迁及在表面迁移的迁移机制,确定了Mn原子由晶体内部向表面的跃迁是影响Mn扩散的决定性因素,为铁素体Fe-Cr合金在SOFCs连接体上的应用提供了理论支持。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马柯榕
张浩
张永帅
李坤
杜秀娟
杨雯
关键词:  铁素体合金  Mn迁移  扩散系数  第一性原理    
Abstract: Ferritic alloys are widely used interconnect materials for solid oxide fuel cells (SOFCs) at present. The Mn doped Fe-Cr alloy interconnects form two layers of Cr2O3 and (Cr, Mn)3O4 in the oxide film in service, which can effectively prevent the problems of insufficient high tempe-rature oxidation resistance and the volatilization of Cr. And the diffusion of Mn atoms in Fe-Cr alloy is crucial to the formation of (Cr, Mn)3O4 layer, but its microscopic mechanism is still unclear. In this wrok, the possible diffusion pathways of Mn atoms on the surface and the hopping diffusion of Mn from the inside to the surface of the ferritic Fe-Cr alloy using first-principles based on density functional theory (DFT) were syste-matically investigated. The bulk model of perfect Fe-25%Cr alloy and the slab model of (110) surface are set up and optimized. The potential energy surface (PES) of Mn on the surface and the stable adsorption positions of Mn are calculated, while the possible pathways of Mn on the surface are found. Furthermore, we employ the nudged elastic band (NEB) method to calculate the energy barriers of different Mn diffusion pathways. The results present that the maximum energy barrier for the surface diffusion is about 0.191 eV, while it is 4.480 eV for the hopping diffusion. And the corresponding Mn diffusion coefficients versus temperature for different diffusion processes are obtained accordingly. Our results explain the microscopic mechanism of Mn hopping diffusion and the surface diffusion of ferritic Fe-Cr alloy from the atomic scale, and find that the hopping diffusion determines the Mn diffusion, which provides theoretical guidance of the ferritic Fe-Cr alloy for its future research and practical applications in SOFCs metallic interconnect.
Key words:  ferritic alloy    Mn diffusion    diffusion coefficient    first-principle
出版日期:  2023-10-10      发布日期:  2023-09-28
ZTFLH:  O469  
基金资助: 国家自然科学基金(51871158)
通讯作者:  *杨雯,太原科技大学材料科学与工程学院教授、博士研究生导师。2004年曲阜师范大学物理系物理学专业本科毕业,2009年中国科学院固体物理研究所凝聚态物理专业博士毕业。目前主要从事计算材料学方向的理论研究及金属表面改性方向的实验研究。发表学术论文50余篇,包括Soft Matter、Phys.Chem.Chem.Phys.、Phys.Rev.E等。 yangwen@tyust.edu.cn   
作者简介:  马柯榕,2019年6月于南开大学滨海学院获得工学学士学位。现为太原科技大学应用科学学院硕士研究生,在杜秀娟和杨雯教授的指导下进行研究。目前主要从事金属中元素迁移行为的理论研究。
引用本文:    
马柯榕, 张浩, 张永帅, 李坤, 杜秀娟, 杨雯. Mn在铁素体Fe-25%Cr合金中的迁移行为研究[J]. 材料导报, 2023, 37(19): 22040395-5.
MA Kerong, ZHANG Hao, ZHANG Yongshuai, LI Kun, DU Xiujuan, YANG Wen. Study on Diffusion Behavior of Mn in Ferritic Fe-25%Cr Alloy. Materials Reports, 2023, 37(19): 22040395-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040395  或          http://www.mater-rep.com/CN/Y2023/V37/I19/22040395
1 Shao Z P, Haile S M. Nature, 2004, 431, 170.
2 Yi B L. Fuel cell—principle, technology, application, Chemical Industry Press, China, 2003(in Chinese).
衣宝廉. 燃料电池—原理·技术·应用, 化学工业出版社, 2003.
3 Puranen J, Lagerbom J, Hyvrinen L, et al. Journal of Thermal Spray Technology, 2011, 20, 154.
4 Chen L, Qi Y, Mu S C. Surface Technology, 2015, 44(1), 29(in Chinese).
陈磊, 齐意, 木士春. 表面技术, 2015, 44(1), 29.
5 Wang S R, Ye X F. Solid oxide fuel cell technology, Wuhan University Press, China, 2015(in Chinese).
王绍荣, 叶晓峰. 固体氧化物燃料电池技术, 武汉大学出版社, 2015.
6 Song S D, Han M F, Sun Z H. Chinese Science Bulletin, 2014, 59(15), 1405(in Chinese).
宋世栋, 韩敏芳, 孙再洪. 科学通报, 2014, 59(15), 1405.
7 Xin X S, Zhu Q S. Progress in Chemistry, 2009, 21(1), 227(in Chinese).
辛显双, 朱庆山. 化学进展, 2009, 21(1), 227.
8 Zhu W Z, Deevi S C. Materials Science and Engineering, 2003, 348, 227.
9 Talic B, Falk-Windisch H, Venkatachalam V, et al. Journal of Power Sources, 2017, 354, 57.
10 Zhu W Z, Deevi S C. Materials Research Bulletin, 2003, 38, 957.
11 Yang Z, Hardy J S, Walker M S, et al. Journal of the ELectrochemical Society, 2004, 151(11), A1825.
12 Yang Z, Xia G G, Li X H, et al. International Journal of Hydrogen Energy, 2007, 32(16), 3548.
13 Zhang H, Zhan Z L, Liu X B. Journal of Power Sources, 2011, 196, 8041.
14 Niewolak L, Garcia-Fresnillo L, Meier G H, et al. Journal of Alloys and Compounds, 2015, 638, 405.
15 Sabioni A C S, Huntz A M, Borges L C, et al. Philosophical Magazine, 2007, 87(12), 1921.
16 Kresse G, Furthmüller J. Physical Review B, 1996, 54, 11169.
17 Kresse G, Joubert G. Physical Review B, 1999, 59, 1758.
18 Huang G Y, Wang C Y, Wang J T. Computer Physics Communications, 2012, 183, 1749.
19 Perdew J P, Burke K, Ernzerhof M J P R L. Physical Review Letters, 1996, 77(18), 3865.
20 Ulitsky A, Elber R. Journal of Chemical Physics, 1990, 92, 1510.
21 Klaver T P C, Drautz R, Finnis M W. Physical Review B, 2006, 74, 094435.
22 Olsson P, Domain C, Wallenius J. Physical Review B, 2007, 75, 014110.
23 Lide D R. Handbook of chemistry and physics(88th ed. ), CRC Press, London, 2007.
24 Pearson W B. A handbook of lattice spacings and structures of metals and alloys, Pergamon Press, London, 1958.
25 Wang L P, Yang W, Ma Z B, et al. Computational Materials Science, 2020, 181, 109733.
26 Kisaburo A, Takuji O, Satoru T, et al. Journal of Nuclear Materials, 2013, 442, 705.
27 Karina G, Juan I, Martha L, et al. Applied Surface Science, 2022, 599, 154052.
28 Yu Y Z, Zhang J, Sun X Y, et al. Surface Science, 2020, 691, 121513.
29 Li K, Yang W, Ma Z B, et al. ACS Omega, 2020, 5, 851.
30 Li J, Wang Y M, Jiang B, et al. Journal of Chemical Physics, 2012, 136, 345.
31 Zhang L L, Zhao J A, Liu D, et al. Physical Chemistry Chemical Phy-sics, 2022, 24, 1007.
32 Mcguigan B C, Johnson H T, Pochet P. Computational Materials Science, 2019, 166, 1.
33 Partridge H, Schwenke D W. Journal of Chemical Physics, 1997, 106, 4618.
34 Henkelman G, Uberuaga B P, Jonsson H. Journal of Chemical Physics, 2000, 113, 9901.
35 Henkelman G, Jonsson H. Journal of Chemical Physics, 2000, 113, 9978.
[1] 刘晨曦, 庞国旺, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能. S和Al掺杂单层g-C3N4电子结构与光学性质的第一性原理研究[J]. 材料导报, 2023, 37(9): 21100044-6.
[2] 余瑞, 张永安, 李亚楠, 李锡武, 李志辉, 闫丽珍, 温凯, 熊柏青. Zn对Al-Mg-Si合金时效析出相稳定性影响的第一性原理研究[J]. 材料导报, 2023, 37(4): 21040034-5.
[3] 才文文, 贺勇, 张敏, 史俊杰. AZrX3(A=Ba, Ca;X=S, Se,Te)钙钛矿结构及光电特性的第一性原理研究[J]. 材料导报, 2023, 37(2): 21070076-6.
[4] 林博文, 徐亦冬, 余德密. MgAl-LDHs/TiO2复合光催化剂的制备及光催化性能[J]. 材料导报, 2023, 37(19): 22050098-6.
[5] 孙翠翠, 毕舰镭. 边缘修饰对锗烯纳米带电子结构的影响[J]. 材料导报, 2023, 37(13): 21110002-8.
[6] 张鹏军, 陈国祥, 安国, 刘迎港. 铁修饰二碲化钼吸附氮化物的气敏特性研究[J]. 材料导报, 2023, 37(12): 21110219-6.
[7] 王勇, 张微微, 李永存, 张旭昀, 孙丽丽. 第一性原理计算在电化学腐蚀中的应用研究进展[J]. 材料导报, 2023, 37(12): 21110046-11.
[8] 陈晶亮, 栾丽君, 张茹, 张研, 杨云, 刘剑, 田野, 魏星, 樊继斌, 段理. Ⅱ型C2N/ZnO异质结水分解光催化剂的第一性原理研究[J]. 材料导报, 2023, 37(11): 21110258-8.
[9] 孟帅, 李坤, 秦振兴, 张宇飞, 马柯榕, 宫长伟, 杨雯. 铝酸钇晶体光学性质和热力学性质的第一性原理研究[J]. 材料导报, 2023, 37(10): 22060251-5.
[10] 温希平, 唐帅, 彭庆, 张宪法, 李林鲜, 刘振宇, 王国栋. NaCl型过渡金属碳化物稳定性及力学性质的第一性原理计算[J]. 材料导报, 2022, 36(Z1): 21090072-6.
[11] 徐良玉, 黄福祥, 龙敏, 邓鸿元, 陈剑. 过渡金属元素(X=Cr, Mn, Co, Ni, Zn, Zr, Nb, Ta)掺杂立方BaTiO3的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2022, 36(Z1): 21090275-5.
[12] 贾慧灵, 于海滨, 吴锦绣, 谭心, 王峰, 孙士阳. Al、Cr、Fe掺杂对KDP(001)晶面力学性能影响的第一性原理研究[J]. 材料导报, 2022, 36(Z1): 22020116-6.
[13] 卢学峰, 王宽, 崔志红. 掺杂(硅、锗、锡)单壁碳纳米管的第一性原理研究[J]. 材料导报, 2022, 36(9): 20120188-5.
[14] 高梦锞, 魏世忠, 吴巧合, 袁智康, 熊美. (Fe,Cr)7C3/MoC界面电子特性的第一性原理研究[J]. 材料导报, 2022, 36(9): 21020149-6.
[15] 郑棋文, 范同祥. 液/固晶面润湿性实验与模拟研究方法[J]. 材料导报, 2022, 36(9): 21010025-12.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed