Please wait a minute...
材料导报  2023, Vol. 37 Issue (2): 20110098-8    https://doi.org/10.11896/cldb.20110098
  无机非金属及其复合材料 |
水泥净浆非碳化区与脱钙碳化区的微观力学表征
张弛*, 李克非, 王俊杰
清华大学土木工程系,北京 100084
Micro-mechanical Characterization of Non-carbonation and Decalcification Carbonation Zones of Cement Paste
ZHANG Chi*, LI Kefei, WANG Junjie
School of Civil Engineering, Tsinghua University, Beijing 100084, China
下载:  全 文 ( PDF ) ( 4770KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作重点讨论了如何运用压痕技术来表征水泥净浆试块上非碳化区和脱钙碳化区在微米尺度上的力学特性,并配合使用扫描电子显微镜和电子探针技术,得出了在脱钙后,随着Ca/Si物质的量比的下降,碳化区主体C-S-H结构中部分区域微观力学性能降低的结论。其硬度和弹性模量分别降低了33%、37%。同时,运用纳米划痕、扫描电子显微镜、扫描电子探针,以及热重技术,依次获取了水泥净浆试块在两个区域上的表面倾斜度、表面粗糙度、元素种类、沿碳化深度方向上的元素组成与分布,以及热重试验中的质量烧失。在脱钙前的碳化过程中,水泥浆体会吸收二氧化碳而增加质量,使弹性模量等力学性能增强;而脱钙后碳化会导致水泥浆体的骨架变得松散、表面变得粗糙,以及裂纹和孔隙数量增加。非碳化区和脱钙碳化区的水泥净浆试块磨制的粉末在热重试验中烧失的质量占比分别为26.7%和36.2%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张弛
李克非
王俊杰
关键词:  水泥浆体  碳化  微米压痕  热重  纳米划痕    
Abstract: The article mainly discusses the methods to apply the indentation technology in characterizing the micro-mechanical properties of the non-carbonation and decalcification carbonation zones of the cement paste testing blocks. With the introducing of the scanning electron microscopy and electron probe technologies, it is concluded that the E-modulus and other micro-mechanical properties of the decalcification carbonation zones decline with the decrease of the Ca/Si mole ratio. The hardness and elastic modulus of them were reduced by 33% and 37%, respectively. At the same time, the nano-scratch, scanning electron microscopy, scanning electron probe, and thermogravimetric technologies were utilized in proper sequence to acquire the two zones' the surface inclination, surface roughness, element types, elemental composition and distribution conditions along the carbonation depth, as well as the quality losses during the thermogravimetry tests. The hardened cement pastes before decalcification absorb carbon dioxide, and the total quality of them will increase, with a certain micro-mechanical enhancement effect during the whole carbonation progress. However, the decalcification carbonation will lead to more loosen skeleton, as well as the rougher surface with more cracks and pores. The mass losses of cement paste powder ground from the non-carbonation and decalcification carbonation zones were 26.7% and 36.2% respectively during the thermogravimetry tests.
Key words:  cement paste    carbonation    micro-indentation    thermogravimetry    nano-scratch
发布日期:  2023-02-08
ZTFLH:  TU528.45  
基金资助: 国家重点研发计划(2017YFB0309904)
通讯作者:  *张弛,博士。2004年本科毕业于江苏大学。2008年硕士毕业于江苏大学。2017年从加拿大拉瓦尔大学获博士学位。2020年清华大学博士后出站。主要研究领域为施工技术、水泥基材料以及微观力学,发表论文30余篇。   
引用本文:    
张弛, 李克非, 王俊杰. 水泥净浆非碳化区与脱钙碳化区的微观力学表征[J]. 材料导报, 2023, 37(2): 20110098-8.
ZHANG Chi, LI Kefei, WANG Junjie. Micro-mechanical Characterization of Non-carbonation and Decalcification Carbonation Zones of Cement Paste. Materials Reports, 2023, 37(2): 20110098-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110098  或          http://www.mater-rep.com/CN/Y2023/V37/I2/20110098
1 Šavija B, Luković M. Construction and Building Materials, 2016, 117, 285.
2 Shah V, Scrivener K, Bhattacharjee B, et al. Cement and Concrete Research, 2018, 109, 184.
3 Morandeau A, Thiéry M, Dangla P. Cement and Concrete Research, 2014, 562, 153.
4 Richardson I G, Groves G W, Brough A R, et al. Advanced in Cement Research, 1993, 18, 81.
5 Castellote M, Fernandes L, Andrade C, et al. Materials and Structures, 2009, 42, 515.
6 Bakharev T, Sanjayan J G, Cheng Y B. Cement and Concrete Research, 2001, 31, 1277.
7 Gastaldi D, Bertola F, Canonico F, et al. Cement and Concrete Research, 2018, 109, 30.
8 Chang C F, Chen J W. Cement and Concrete Research, 2006, 36, 1760.
9 Ahmad S, Assaggaf R A, Maslehuddin M, et al. Construction and Building Materials, 2017, 136, 565.
10 Giannakopoulos A E, Suresh S. Scripta Materialia, 1999, 40(10), 1191.
11 Oliver W C, Pharr G M. Material Research Society, 1992, 7(6), 1564.
12 Fischer-Cripps A C. In:Nanoindentation testing, Nanoindentation, Mechanical Engineering Series. Springer, New York, 2011, pp.21.
13 Griepentrog M, Krämer G, Cappella B. Polymer Testing, 2013, 32(3), 455.
14 Galin L A. Contact problems in elasticity theory, GITTL, Moscow, 1953.
15 Shi C J, Yuan Q. Testing and analysis methods for cement-based materials, China Construction Industry Press, China, 2018, pp. 191(in Chinese).
史才军, 元强. 水泥基材料测试分析方法, 中国建筑工业出版社, 2018, pp. 191.
16 Mu Y, Xue G, Zhao S, et al. Journal of Chinese Ceramic Society, 2019, 45(8), 1190(in Chinese).
穆元冬, 雪高瑞, 赵思雪, 等. 硅酸盐学报, 2019, 45(8), 1190.
[1] 罗翔, 米振莉, 吴彦欣, 杨永刚, 江海涛, 胡宽辉. 退火温度对LH800空冷强化钢组织与力学性能的影响[J]. 材料导报, 2023, 37(3): 21080047-6.
[2] 谭益成, 刘志超, 王发洲. -10 ℃条件下掺氯化镁溶液的γ-C2S碳化性能研究[J]. 材料导报, 2023, 37(1): 22010270-7.
[3] 温希平, 唐帅, 彭庆, 张宪法, 李林鲜, 刘振宇, 王国栋. NaCl型过渡金属碳化物稳定性及力学性质的第一性原理计算[J]. 材料导报, 2022, 36(Z1): 21090072-6.
[4] 高梦锞, 魏世忠, 吴巧合, 袁智康, 熊美. (Fe,Cr)7C3/MoC界面电子特性的第一性原理研究[J]. 材料导报, 2022, 36(9): 21020149-6.
[5] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[6] 肖美霞, 冷浩, 姚婷珍, 王磊, 何成. 电场调控范德华异质薄膜能隙的第一性原理研究:单层SiC沉积在表面氢化的BN薄膜上[J]. 材料导报, 2022, 36(8): 20080062-6.
[7] 张铖, 王玲, 姚燕, 史鑫宇. 逐层磨粉pH值法测定混凝土碳化深度的试验研究[J]. 材料导报, 2022, 36(7): 21030009-4.
[8] 蔡雨晨, 冯可芹, 周博芳, 陈思潭. Nb对Zr基钎料及钎焊连接SiC陶瓷的影响[J]. 材料导报, 2022, 36(3): 20090283-5.
[9] 孙红刚, 司瑶晨, 夏淼, 李红霞, 赵世贤, 杜一昊, 尚心莲. 碳化硅-六铝酸钙复合材料的抗渣机制:煤气化用无铬耐火材料新探索[J]. 材料导报, 2022, 36(20): 21040081-6.
[10] 田继挺, 冯琦杰, 郑健, 周韦, 李欣, 梁晓波, 刘德峰. 单晶立方碳化硅辐照肿胀与非晶化的分子动力学模拟研究[J]. 材料导报, 2022, 36(2): 20100248-5.
[11] 赵燕茹, 刘明, 王磊, 王志慧. 碳化高温后普通混凝土抗压强度及孔结构演化规律[J]. 材料导报, 2022, 36(19): 21050152-8.
[12] 王渊源, 阎鑫, 艾涛, 周鑫, 余康, 牛艳辉. 碳化三聚氰胺泡沫负载ZIF-67活化过硫酸氢钾降解罗丹明B[J]. 材料导报, 2022, 36(17): 21040213-7.
[13] 石浩, 豆志河, 孟扬, 张廷安. 镁热自蔓延高温合成碳化硼粉体及其成分调控研究[J]. 材料导报, 2022, 36(16): 21060212-6.
[14] 陈瑞润, 陈秀刚, 高雪峰, 秦刚, 宋强, 崔洪芝. 原位自生碳化物增强CoCrFeNi高熵合金的显微组织与力学性能[J]. 材料导报, 2022, 36(14): 22050073-6.
[15] 种振曾, 孙耀宁, 程旺军, 韩晨阳, 苏才津, 娜菲沙·迪力夏提, 樊子龙. 纳米WC对AlCoCrFeNi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2022, 36(14): 22030230-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed