Please wait a minute...
材料导报  2022, Vol. 36 Issue (7): 21030009-4    https://doi.org/10.11896/cldb.21030009
  无机非金属及其复合材料 |
逐层磨粉pH值法测定混凝土碳化深度的试验研究
张铖, 王玲, 姚燕, 史鑫宇
中国建筑材料科学研究总院有限公司,绿色建筑材料国家重点实验室,北京 100024
Determination of Concrete Carbonation Depth by Testing the pH Value of Layer-by-layer Grinding Concrete Samples
ZHANG Cheng, WANG Ling, YAO Yan, SHI Xinyu
State Key Laboratory of Green Building Materials, China Building Materials Academy Co., Ltd., Beijing 100024, China
下载:  全 文 ( PDF ) ( 2058KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 目前测定混凝土碳化深度的常规方法是酚酞酒精法(以质量分数为1%的酚酞酒精溶液为显色剂),它能确定混凝土中pH值小于10的完全碳化区域。混凝土的部分碳化区(PCZ)介于完全碳化区(FCZ)和未碳化区(NCZ)之间,其孔溶液碱度因碳化pH值下降至小于11.5时会导致钢筋钝化膜失稳,影响混凝土结构服役寿命,但常规碳化深度测定方法检测不出这一区域,因此未能完整反映混凝土实际碳化损伤。本工作探索了逐层磨粉测定混凝土pH值以确定混凝土碳化深度的方法,测试了碳化7 d、14 d、28 d和56 d混凝土中FCZ和PCZ的厚度,利用热重分析(TG)测定了碳化混凝土内部各层Ca(OH)2与CaCO3分布,建立了混凝土中Ca(OH)2与pH值的对应关系。结果表明:磨粉逐层测试pH值确定的混凝土碳化深度是酚酞酒精法的1.5~2倍,酚酞酒精法忽略了PCZ中可能导致钢筋钝化膜失稳的区域,pH值法测定混凝土碳化深度更为准确。试验还发现混凝土逐层pH值与该层Ca(OH)2含量呈正相关,与该层CaCO3含量呈负相关,通过逐层pH值的变化可反映混凝土碳化反应的进程。本研究为碳化混凝土结构服役寿命预测提供更准确的碳化深度数据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张铖
王玲
姚燕
史鑫宇
关键词:  混凝土  加速碳化  部分碳化区  pH值分布    
Abstract: At present, the conventional method for the determination of concrete carbonation depth is the phenolphthalein alcohol method (using 1wt% phenolphthalein alcohol solution as an indicator). However, it can only determine the fully carbonated zone with the pH value of less than 10. The partially carbonated zone (PCZ) lies between the fully carbonated zone (FCZ) and the non-carbonated zone (NCZ). In the PCZ, the pH value of the concrete pore solution decrease due to carbonation.Instability of the steel bar's passivation film will arise when the pH value is down to 11.5, affecting the concrete structure's service life in the future. Unfortunately, the conventional phenolphthalein alcohol method can not detect this important zone and thus can not reflect the concrete's real carbonation damage. This work explored a method to determine the concrete carbonation depth by testing the pH values of layer-by-layer grinding concrete powder. The width of FCZ and PCZ in concrete carbonated for 7 d, 14 d, 28 d, and 56 d was measured. The Ca(OH)2 and CaCO3 profiles of carbonated concrete were measured by thermogravimetric analysis (TG). The relationship between Ca(OH)2 content and pH value was established. Results show that the pH value method's carbonation depth is 1.5—2 times that of the phenolphthalein alcohol method. Part of the PCZ, where the steel bar's passivation film has been instable, is ignored when the phenolphthalein alcohol method is used to determine the carbonation depth. The pH value method is more accurate in measuring the real carbonation depth of concrete. The pH value is positively correlated with the Ca(OH)2 content in each concrete layer, while it is negative collated with the CaCO3 content in each concrete layer. Therefore,the pH profile can reflect the carbonation reaction progress in concrete. This research provides more accurate carbonation depth data for predicting the carbonated concrete structure's service life.
Key words:  concrete    accelerated carbonation    partial carbonated zone    pH profiles
发布日期:  2022-04-07
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51961135202)
通讯作者:  lingwangcbma@qq.com   
作者简介:  张铖,中国建筑材料科学研究总院博士研究生,RILEM技术委员会TC-281 CCC成员。参与国家自然科学基金国际(地区)合作项目及RILEM TC-281 CCC等研究工作。从事混凝土耐久性研究,重点研究含辅助性胶凝材料的混凝土碳化、应力-碳化作用下的混凝土劣化损伤以及应力作用下碳化混凝土寿命预测。
王玲,1990年于同济大学获工学学士学位,1993年于武汉工业大学获工学硕士学位,现为中国建筑材料科学研究总院教授级高级工程师,博士研究生导师,主要研究方向是混凝土耐久性和混凝土外加剂。完成20项国家科技计划课题和国际科技合作项目,研究重点是极端环境下长寿命混凝土制备及应用技术、高速铁路无砟轨道混凝土新材料、荷载与典型服役环境耦合作用下混凝土耐久性评价与寿命预测、混凝土收缩开裂控制技术、液体无碱速凝剂和喷射混凝土技术,成果在京沪高铁、青藏铁路等多个国家重点工程中应用。发表论文70篇,获发明专利40项,编写国标15项和RILEM标准1项,获国家和省部级科技奖励10项。
引用本文:    
张铖, 王玲, 姚燕, 史鑫宇. 逐层磨粉pH值法测定混凝土碳化深度的试验研究[J]. 材料导报, 2022, 36(7): 21030009-4.
ZHANG Cheng, WANG Ling, YAO Yan, SHI Xinyu. Determination of Concrete Carbonation Depth by Testing the pH Value of Layer-by-layer Grinding Concrete Samples. Materials Reports, 2022, 36(7): 21030009-4.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030009  或          http://www.mater-rep.com/CN/Y2022/V36/I7/21030009
1 Marcos-Meson V, Michel A, Solgaard A, et al. Cement and Concrete Research, 2018, 103,1.
2 Rita F. Applied Sciences, 2017, 7(11),1157.
3 Stefanoni M, Angst U, Elsener B. Cement and Concrete Research, 2018, 103,35.
4 Mcpolin D O, Basheer P A, Long A E, et al. Journal of Materials in Civil Engineering, 2007, 19(11),936.
5 Ji Y S, Wu M, Ding B D, et al. Construction and Building Materials, 2014, 65,67.
6 Vogler N, Lindemann M, Drabetzki P, et al. Cement and Concrete Composites, 2020, 109,103565.
7 Houst Y F, Wittmann F H. Cement and Concrete Research, 2002, 32(12),1923.
8 Galan I, Andrade C, Castellote M. Journal of Thermal Analysis & Calorimetry, 2012, 110(1),309.
9 Branch J L, Kosson D S, Garrabrants A C, et al. Cement and Concrete Research, 2016, 89,297.
10 Géraldine V, Thiery M, Gérard P. Cement and Concrete Research, 2007, 37(8),1182.
11 Yao Y, Tang G B, Wang L, et al. Romanian Journal of Materials, 2018, 48(1), 70.
12 Chang J, Li J Y, Han J N, et al. Construction and Building Materials, 2019, 197(10),641.
13 Wang X H, Val D V, Li Z, et al. Construction and Building Materials, 2020, 243,118259.
14 Chao J, Gu X L, Huang Q H, et al. Cement and Concrete Composites, 2018, 93,140.
15 Wang J, Su H, Du J S. Construction and Building Materials, 2018, 190(30),439.
16 Thiery M, Villain G, Dangla P, et al. Cement and Concrete Research, 2007, 37(7),1047.
[1] 刘娟红, 孟翔, 段品佳, 马焜. 基于MATLAB的混凝土裂缝宽度计算方法研究[J]. 材料导报, 2022, 36(6): 21010082-6.
[2] 张路, 牛荻涛, 文波, 张永利, 陈昊. 改性珊瑚骨料混凝土中钢筋的腐蚀行为[J]. 材料导报, 2022, 36(6): 20110005-7.
[3] 单广程, 陈健, 乔敏, 高南箫, 赵爽, 吴井志, 朱伯淞, 冉千平. 缓释技术在混凝土中的应用研究进展[J]. 材料导报, 2022, 36(5): 20050237-7.
[4] 王威娜, 周圣雄, 秦煜. 室内反射裂缝试验方法研究进展[J]. 材料导报, 2022, 36(5): 20090234-10.
[5] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[6] 于琦, 万小梅, 赵铁军, 王腾, 韩笑, 孙忠涛. 碱激发矿渣混凝土抗氯离子渗透性及电测试验方法研究[J]. 材料导报, 2022, 36(5): 20120067-6.
[7] 马俊军, 蔺鹏臻. 基于细观尺度的UHPC氯离子扩散预测CA模型[J]. 材料导报, 2022, 36(5): 21040188-6.
[8] 楚英杰, 王爱国, 孙道胜, 刘开伟, 马瑞, 吴修胜, 郝发军. 骨料特性影响混凝土体积稳定性的研究进展[J]. 材料导报, 2022, 36(5): 20110088-10.
[9] 孙晓燕, 陈龙, 王海龙, 张静. 面向水下智能建造的3D打印混凝土配合比优化研究[J]. 材料导报, 2022, 36(4): 21050230-9.
[10] 周莹, 穆松, 蒲春平, 周霄骋, 李勇泉, 蔡景顺, 谢德擎. 隧道初支混凝土抗冲刷溶蚀技术评价及作用机理[J]. 材料导报, 2022, 36(4): 20120200-8.
[11] 陈徐东, 冯璐, 张锦华, 刘志恒, 董文, 温荣鲲. 不同密度泡沫混凝土梁断裂特性及数值模拟[J]. 材料导报, 2022, 36(4): 20090086-7.
[12] 杨利香, 宋兴福, 陆美荣, 夏月辉. 基于再生粗骨料裹浆厚度的含砂透水混凝土配合比设计方法[J]. 材料导报, 2022, 36(4): 21020037-7.
[13] 徐福卫, 田斌, 徐港. 界面过渡区厚度对再生混凝土损伤性能的影响分析[J]. 材料导报, 2022, 36(4): 20100200-7.
[14] 吴建东, 郭丽萍, 曹园章, 费香鹏. 超高性能混凝土早期600 ℃抗爆裂性能研究[J]. 材料导报, 2022, 36(3): 20110163-6.
[15] 耿健智, 朱德举, 郭帅成, 易勇, 周琳林. 基于不同地域海砂的海水海砂混凝土力学性能试验研究[J]. 材料导报, 2022, 36(3): 21010189-8.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed