Please wait a minute...
材料导报  2020, Vol. 34 Issue (6): 6109-6113    https://doi.org/10.11896/cldb.19030145
  金属与金属基复合材料 |
一种先进超超临界火电机组用Ni-Fe-Cr基高温合金的热变形行为
韩丽青1, 吴云胜2,3, 刘状2, 秦学智2, 王常帅2, 周兰章2, 于宏1, 陈亚军4
1 中国原子能科学研究院,北京 102413;
2 中国科学院金属研究所,沈阳 110016;
3 中国科学技术大学材料科学与工程学院,合肥 230026;
4 五矿发展股份有限公司,北京 100044
Hot Deformation Behavior of a Ni-Fe-Cr Based Superalloy for Advanced Ultra-supercritical Coal-fired Power Plants Application
HAN Liqing1, WU Yunsheng2,3, LIU Zhuang2, QIN Xuezhi2, WANG Changshuai2, ZHOU Lanzhang2, YU Hong1, CHEN Yajun4
1 China Institute of Atomic Energy, Beijing 102413, China;
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;
3 School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China;
4 Department of Customer Development, Minmetals Development Co., LTD., Beijing 100044, China
下载:  全 文 ( PDF ) ( 3938KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 通过不同变形参数下的等温压缩实验,研究了一种Ni-Fe-Cr基高温合金的热变形行为及动态再结晶机理。结果表明,合金的流变应力随着变形温度的降低或应变速率的升高而增大,而动态再结晶比例随着变形温度的降低或应变速率的升高而降低,但受温升效应影响,应变速率高于1s-1时,动态再结晶比例随着应变速率的升高而升高。合金合理的热变形温度为1100~1200℃,应变速率为0.01~0.3s-1。热变形参数对合金的动态再结晶机理产生影响,高温低应变速率变形时,合金的主要再结晶机理为以晶界弓弯为主要特点的非连续动态再结晶,而低温高应变速率变形时,以晶内亚晶发展为主要特点的连续动态再结晶也发挥重要的作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩丽青
吴云胜
刘状
秦学智
王常帅
周兰章
于宏
陈亚军
关键词:  Ni-Fe-Cr基合金  热变形  动态再结晶  先进超超临界(A-USC)    
Abstract: The deformation behavior of a Ni-Fe-Cr based superalloy for 700 ℃ advanced ultra-supercritical (A-USC) power plant application was studied by the isothermal compression test at temperature range of 900—1 200 ℃ with strain rates of 0.01—10 s-1 on a Gleeble-1500 thermo-mechanical simulator. The results showed that the flow stress increased with the decreasing temperature and the increasing strain rate. The fraction of dynamic recrystallization decreased with the decreasing temperature and the increasing strain rate. However, when the strain rate was higher than 1 s-1, the fraction of dynamic recrystallization rose with the increasing strain rate due to the effect of adiabatic heating. The reasonable deformation temperature range of the alloy was 1 100—1 200 ℃, and the strain rate range was 0.01—0.3 s-1. The nucleation mechanism of dynamic recrystallization in the alloy was discontinuous dynamic recrystallization due to the existence of original grain boundaries bulging at high temperature and low strain rate. However, the dominant nucleation mechanism of dynamic recrystallization at low temperature and high strain rate turned into continuous dynamic recrystallization featured by sub-grains development within the original grains.
Key words:  Ni-Fe-Cr based alloy    hot deformation    dynamic recrystallization    advanced ultra-supercritical (A-USC)
               出版日期:  2020-03-25      发布日期:  2020-03-12
ZTFLH:  TG146.1+5  
基金资助: 国家重点研发计划(2017YFB0305204);国家自然科学基金(51871213)
作者简介:  韩丽青,中国原子能科学研究院,副研究员。2009年7月毕业于北京科技大学,材料科学与工程专业博士学位。同年就职于中国原子能科学研究院工作至今,主要从事反应堆结构材料设计、研发和评定工作。在国内外重要期刊发表文章20多篇;于宏,中国原子能科学研究院,研究员。2013年7月毕业于中国原子能科学研究院,核能科学与工程专业博士学位,在国内外重要期刊发表多篇文章。2005年就职于中国原子能科学研究院工作至今,主要从事反应堆总体设计工作。
引用本文:    
韩丽青, 吴云胜, 刘状, 秦学智, 王常帅, 周兰章, 于宏, 陈亚军. 一种先进超超临界火电机组用Ni-Fe-Cr基高温合金的热变形行为[J]. 材料导报, 2020, 34(6): 6109-6113.
HAN Liqing, WU Yunsheng, LIU Zhuang, QIN Xuezhi, WANG Changshuai, ZHOU Lanzhang, YU Hong, CHEN Yajun. Hot Deformation Behavior of a Ni-Fe-Cr Based Superalloy for Advanced Ultra-supercritical Coal-fired Power Plants Application. Materials Reports, 2020, 34(6): 6109-6113.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030145  或          http://www.mater-rep.com/CN/Y2020/V34/I6/6109
1 Bugge J, Kjær S, Blum R. Energy, 2006, 31 (10-11), 1437.
2 Viswanathan R, Bakker W. Journal of Materials Engineering and Performance, 2001, 10 (1), 81.
3 Patel S J, Baker B A, Gollihue R D. Procedia Engineering, 2013, 55, 246.
4 Lin F S, Xie X S, Zhao S Q, et al. Journal of Chinese Society of Power Engineering, 2011 (12), 960 (in Chinese).
林富生,谢锡善,赵双群,等.动力工程学报, 2011 (12), 960.
5 Jablonski P D, Hawk J A, Cowen C J, et al. JOM, 2012, 64 (2), 271.
6 Guo J T, Du X K. Acta Metallurgica Sinica, 2005, 41 (11), 1221.
7 Park N K, Kim I S, Na Y S, et al. Journal of Materials Processing Technology, 2001, 111 (1-3), 98.
8 Kong Y, Chang P, Li Q, et al. Journal of Alloys and Compounds, 2015, 622, 738.
9 Wang Y, Wang J, Dong J, et al. Journal of Materials Science & Techno-logy, 2018, 34, 2439.
10 Semiatin S L, Weaver D S, Kramb R C, et al. Metallurgical and Mate-rials Transactions A, 2004, 35, 679.
11 Liu Y, Hu R, Li J, et al. Materials Science and Engineering: A, 2009, 508, 141.
12 Pu E, Zheng W, Song Z, et al. Journal of Alloys and Compounds, 2017, 694, 617.
13 Wu Y, Liu Y, Li C, et al. Journal of Alloys and Compounds, 2017, 712, 687.
14 Wu Y, Liu Z, Qin X, et al.Journal of Alloys and Compounds, 2019, 795, 370.
15 Raj R. Metallurgical Transactions A, 1981, 12 (6), 1089.
16 Prasad Y, Gegel H L, Doraivelu S M, et al. Metallurgical Transactions A, 1984, 15 (10), 1883.
17 Momeni A, Dehghani K. Materials Science and Engineering: A, 2010, 527 (21), 5467.
18 Cram D G, Fang X, Zurob H S, et al. Acta Materialia, 2012, 60 (18), 6390.
19 Kumar S S S, Raghu T, Bhattacharjee P P, et al. Journal of Materials Science, 2015, 50 (19), 6444.
20 Nithin B, Chattopadhyay K, Phanikumar G. Metallurgical and Materials Transactions A, 2018, 49 (10), 4895.
21 Sui F L, Xu L X, Chen L Q, et al. Journal of Materials Processing Technology, 2011, 211, 433.
22 Rollett A, Humphreys F J, Rohrer G S, et al. Recrystallization and rela-ted annealing phenomena, Elsevier, Amsterdam, 2004.
23 Frommert M, Gottstein G. Materials Science and Engineering: A, 2009, 506 (1), 101.
[1] 吕鹏, 陈亚楠, 关庆丰, 李姚君, 许亮, 丁佐军. 新型超超临界机组用叶片钢11Cr12Ni3Mo2VN的热变形行为[J]. 材料导报, 2020, 34(4): 4113-4117.
[2] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[3] 张亮亮, 王希靖, 刘骁. 6082-T6铝合金搅拌摩擦过程中动态再结晶方式对焊核区织构类型的影响[J]. 材料导报, 2019, 33(4): 665-669.
[4] 高志玉, 盛凯, 康宇, 张旭, 潘涛. 一种新型高淬透性Ni-Cr-Mo-B钢的热变形本构分析[J]. 材料导报, 2019, 33(4): 694-698.
[5] 朱利敏, 李全安, 陈晓亚, 张清, 王颂博, 张帅. Mg-8Gd-0.5Zr合金热压缩过程中动态再结晶行为[J]. 材料导报, 2019, 33(24): 4117-4121.
[6] 丁雨田, 陈建军, 李海峰, 高钰璧, 许佳玉, 马元俊. 均匀化态GH3625合金热加工图及短流程热挤压管材研究[J]. 材料导报, 2019, 33(16): 2753-2758.
[7] 石磊, 柳翊, 沈俊芳, 金文中, 王黎, 张伟. P-ECAP挤压镁合金空心壁板的晶粒度演变模拟和实验研究[J]. 材料导报, 2019, 33(12): 2019-2024.
[8] 钱昊, 杨银辉, 曹建春, 苏煜森. Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N节Ni型双相不锈钢高温热变形行为[J]. 材料导报, 2019, 33(12): 2040-2046.
[9] 程晓农, 桂香, 罗锐, 杨雨童, 陈乐利, 王威, 王稳. 核电装备用奥氏体不锈钢的高温本构模型及动态再结晶[J]. 材料导报, 2019, 33(11): 1775-1781.
[10] 张永集, 吴光亮, 武尚文. Nb-Ti微合金高强钢动态再结晶动力学及临界条件[J]. 材料导报, 2018, 32(22): 3900-3907.
[11] 孙倩,陈冷. Cu-3.0Ni-0.64Si合金的热变形行为[J]. 材料导报编辑部, 2017, 31(22): 90-94.
[12] 王伟, 马瑞, 赵军, 翟瑞雪. 铸锻联合成形工艺晶粒分布预测协同仿真技术*[J]. 《材料导报》期刊社, 2017, 31(2): 150-154.
[13] 罗锐, 程晓农, 郑琦, 朱晶晶, 王皎, 刘天, 陈光, 杨乔. 新型含铝奥氏体耐热合金Fe-20Cr-30Ni-0.6Nb-2Al-Mo的动态再结晶行为*[J]. 《材料导报》期刊社, 2017, 31(18): 136-140.
[14] 贺毅强, 钱晨晨, 李俊杰, 周海生. 喷射沉积铝基复合材料再结晶控制与强韧化机制的研究现状*[J]. 《材料导报》期刊社, 2017, 31(17): 90-97.
[15] 戴青松, 欧世声, 邓运来, 付平, 张佳琪. 5083铝合金的热变形组织演变及晶粒度模型*[J]. 《材料导报》期刊社, 2017, 31(14): 143-146.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed