Please wait a minute...
材料导报  2020, Vol. 34 Issue (17): 17031-17040    https://doi.org/10.11896/cldb.20040054
  高熵合金 |
高熵合金辐照性能的计算机模拟进展
徐彪1, 付上朝1, 赵仕俊1, 贺新福2
1 香港城市大学机械工程系,香港(中国) 999077
2 中国原子能科学研究院,北京 102413
Computer Simulation of Irradiation Performance of High Entropy Alloy
XU Biao1, FU Shangchao1, ZHAO Shijun1, HE Xinfu2
1 Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
2 China Institute of Atomic Energy, Beijing 102413, China
下载:  全 文 ( PDF ) ( 7674KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 核电在现有能源体系中扮演着十分重要的角色,是当今世界急需的清洁能源中的重要组成部分。在核电系统中,核能结构材料是保证其可靠性和安全性最重要的因素之一。在未来的第四代裂变和聚变反应堆中,核心结构材料需处在高温、强化学腐蚀以及强中子辐照等恶劣环境中。这样极端恶劣的应用环境对新一代反应堆的结构材料提出了十分苛刻的要求。由核裂变或核聚变产生的高能中子会引起材料中显著的原子位移并产生点缺陷或缺陷团簇,从而使材料性能发生退化,因此深入研究材料在辐照条件下的损伤机制对开发新型抗辐照结构材料及先进反应堆的实施至关重要。近年来,一类新型的合金材料——高熵合金在抗辐照、耐腐蚀方面展现出一定的潜力,成为新一代反应堆结构材料的重要候选材料之一。在研究其辐照损伤机制时,由于物理实验常常受设备、成本等的限制,计算模拟成为理解其抗辐照机理的一种重要手段。
   当前,高熵合金的辐照性能模拟还存在诸多问题。其中,由于元素随机排布导致的无序状态是重要的限制因素之一,对计算模拟方法提出了很大的挑战。例如,由于元素的随机排列,各组成元素的化学势定义比较困难,导致高熵合金中缺陷能量的计算可能出现不同的结果。另外,由于组成元素较多,高熵合金体系的经验作用势较难获得,导致分子动力学模拟等手段难以开展;而不依赖原子间作用势的第一性原理计算模拟方法则受计算能力的限制,只能模拟较小的原子体系,对缺陷团簇性质和缺陷长时间的扩散研究基本无能为力。这些限制因素是高熵合金辐照性能模拟的难点。
   尽管如此,近年来,学者们在高熵合金的辐照性能模拟研究上也取得了较大的进步。例如,对化学无序状态的分析,很好地解释了高熵合金中抗辐照性能与其结构之间的关联;通过分析初始移位损伤及其移位阈能的变化,很好地揭示了其辐照条件下的缺陷产生机制;在分析缺陷的形成能和迁移能变化中,发现了缺陷的缓慢扩散特性以及缺陷的优先扩散效应;还对缺陷复合以及缺陷之间的相互作用进行了研究,展现了不同类型缺陷间的复合以及相互作用机制。
   本文主要综述了近几年关于高熵合金辐照性能的计算机模拟的相关研究。首先,对高熵合金的基本性质,及其辐照损伤研究和计算模拟方法进行了介绍,然后对辐照条件下高熵合金中缺陷产生的机制、缺陷能量特性、缺陷扩散现象、缺陷之间的复合以及不同缺陷之间的相互作用等五个方面进行了讨论。最后,对当前面临的挑战和未来可能的发展方向提出了一些看法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐彪
付上朝
赵仕俊
贺新福
关键词:  高熵合金  辐照模拟  分子动力学  第一性原理计算  缺陷演化    
Abstract: Nuclear power plays a vital role in the existing energy system and is an essential part of the clean energy that is urgently needed in the world today. Nuclear structural materials are one of the most critical factors to ensure the reliability and safety of nuclear power systems. In the future fourth-generation fission and fusion reactors, the core structural materials will be in harsh environments such as high temperature, strong chemical corrosion, and intense neutron irradiation. This extremely harsh application environment puts stringent requirements on the structural materials used for future reactors. High energy neutrons generated by nuclear fission or nuclear fusion would cause significant atomic displacement in the material and produce point defects or defect clusters, which will degrade the performance of the material. Therefore, it is crucial to study the damage mechanism of materials under irradiation conditions and to develop new irradiation-resistant structural materials for the implementation of advanced reactors. In recent years, as a new type of alloys, high entropy alloy (HEAs) has shown good irradiation resistance and corrosion resistance, hence they have become one of the prominent candidates for the structural materials used in the future reactors. Among various efforts to study the irradiation damage mechanism of HEAs, computational simulation has become an extraordinary method to understand their radiation resistance, since experiments would be limited by the cost and availability of the equipment.
At present, there still exist many problems in the simulation of the irradiation performance of HEAs. One of the most important factor is that the disordered state caused by the random arrangement of elements poses a significant challenge to computational simulation methods. For example, due to the random arrangement of elements, it is difficult to define the chemical potential of each constituent element, which leads to different results in the calculation of defect energies in HEAs. Due to the large number of constituent elements, the empirical potentials for HEAs are difficult to obtain, which makes it challenging to carry out molecular dynamics simulation and other simulation methods. Moreover, the first-principles calculation method, which does not rely on the empirical potentials, is limited by computational capability. It can only simulate small atomic systems, but can not simulate the nature of defect clusters and the long-term diffusion of defects. These factors are the limitations in the simulation of the irradiation performance of HEAs.
Despite these limitations, in recent years, researchers have made significant progress in the simulation of the irradiation performance of HEAs. For example, the analysis of chemical disorder helps to explain the relationship between irradiation performance and the structure of HEAs. The mechanism of defect generation under irradiation conditions is well demonstrated by analyzing the initial displacement damage and the properties of the displacement threshold energy. The sluggish diffusion effect and the preferential diffusion of defects are explored by calculating the formation and migration energy of defects. Finally, the recombination of Frenkel defects and interactions among different types of defects are also studied, which elucidate the mechanism of defect evolution in HEAs.
In this paper, recent progress on computer simulation of irradiation performance of HEAs in recent years is reviewed. First, the basic properties of HEAs and several methods used for irradiation damage simulations are briefly introduced. Then, the irradiation damage mechanisms of HEAs are discussed in five aspects as follows: ⅰ. defect generation mechanism, ⅱ. the energetic properties of defects, ⅲ. defect diffusion properties, ⅳ. defect recombination properties, and ⅴ.the interactions among different defects. Finally, we provide some views on the current challenges and possible directions in the future .
Key words:  high entropy alloy    irradiation simulation    molecular dynamics    ab initio calculations    defect evolution
               出版日期:  2020-09-10      发布日期:  2020-09-02
ZTFLH:  TL34  
基金资助: 国家自然科学基金面上项目(11975193);广东省基础与应用基础研究基金(2019A1515011528);深圳市基础研究面上项目(JCYJ20190808181601662);香港城市大学(9610425);香港研究资助局项目(21200919);国家财政部稳定支持研究经费(WDJC-2019-10)
通讯作者:  shijzhao@cityu.edu.hk   
作者简介:  徐彪,2013年获得湖南工学院自动化专业学士学位,2016年获得中南大学控制工程硕士学位,之后,在中国深圳华为做了近两年的算法工程师,再之后,成为南方科技大学工程学院的研究助理。2019年9月,他成为香港城市大学机械工程系博士生。他的研究兴趣集中在机器学习和计算智能方法在预测材料性能和行为方面的应用。
赵仕俊,香港城市大学机械工程系助理教授。2008年于北京大学获学士学位,2013年于北京大学核工程获博士学位。毕业后先后在北京大学和美国橡树岭国家实验室从事博士后研究工作,于2018年加入香港城市大学(中国)。主要从事缺陷相关的计算方面的研究工作,关注不同外在加载条件下的缺陷热力学、动力学、缺陷产生、扩散迁移以及缺陷演化过程。
引用本文:    
徐彪, 付上朝, 赵仕俊, 贺新福. 高熵合金辐照性能的计算机模拟进展[J]. 材料导报, 2020, 34(17): 17031-17040.
XU Biao, FU Shangchao, ZHAO Shijun, HE Xinfu. Computer Simulation of Irradiation Performance of High Entropy Alloy. Materials Reports, 2020, 34(17): 17031-17040.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040054  或          http://www.mater-rep.com/CN/Y2020/V34/I17/17031
1 Duffey R B. Progress in Nuclear Energy, 2005, 47(1-4), 535.
2 Yang T, Li C, Zinkle S J, et al.Journal of Materials Research, 2018, 33(19),3077.
3 Agency I E. International Energy Agency: World Energy Outlook 2019, https://www.iea.org/reports/world-energy-outlook-2019.
4 Zinkle S.Advanced irradiation-resistant materials for Generation IV nuclear reactors, Elsevier, Netherlands,2017.
5 Zinkle S J, Was G.Acta Materialia, 2013, 61(3), 735.
6 Cantor B, Chang I, Knight P, et al.Materials Science and Engineering: A, 2004, 375,213.
7 Miracle D B, Senkov O N.Acta Materialia, 2017, 122,448.
8 Yeh J W, Chen S K, Lin S J, et al.Advanced Engineering Materials, 2004, 6(5),299.
9 Gludovatz B, Hohenwarter A, Catoor D, et al.Science, 2014, 345(6201), 1153.
10 Gludovatz B, Hohenwarter A, Thurston K V, et al.Nature Communications, 2016, 7(1), 1.
11 Chen Y, Duval T, Hung U, et al.Corrosion Science, 2005, 47(9),2257.
12 Qiu Y, Thomas S, Gibson M A, et al.NPJ Materials Degradation, 2017, 1(1), 1.
13 Zhang Y, Stocks G M, Jin K, et al.Nature Communications, 2015, 6,8736.
14 Zhang Y, Jin K, Xue H, et al.Journal of Materials Research, 2016, 31(16), 2363.
15 Zhang Y, Zhao S, Weber W J, et al.Current Opinion in Solid State and Materials Science, 2017, 21 (5),221.
16 Zhang Y, Tunes M A, Crespillo M L, et al.Nanotechnology, 2019, 30(29), 294004.
17 Zhao S.Journal of Materials Science & Technology, 2020, 44,133.
18 Zhao S.Journal of Nuclear Materials, 2020, 530,151886.
19 Zhao S, Zhang Y, Weber W J.High entropy alloys: irradiation, in: Re-ference module in materials science and materials engineering, Elsevier,Netherlands, 2020.
20 Tsai K Y, Tsai M H, Yeh J W. Acta Materialia, 2013, 61(13),4887.
21 Tsai M H, Yeh J W. Materials Research Letters, 2014, 2(3),107.
22 Wirth B D, Odette G R, Marian J, et al.Journal of Nuclear Materials, 2004, 329-333,103.
23 Hohenberg P, Kohn W.Physical Review, 1964, 136(3B), 864.
24 Kohn W, Sham L J.Physical Review, 1965, 140(4A), 1133.
25 Willaime F.Revue de Métallurgie-International Journal of Metallurgy, 2001, 98(12), 1065.
26 Fichthorn K A, Weinberg W H.The Journal of Chemical Physics, 1991, 95(2), 1090.
27 Vineyard G H.Journal of Physics and Chemistry of Solids, 1957, 3(1-2), 121.
28 Leino A A, Samolyuk G D, Sachan R, et al.Acta Materialia, 2018, 151,191.
29 Zhao S, Stocks G M, Zhang Y.Physical Chemistry Chemical Physics, 2016, 18(34),24043.
30 Golubov S I, Barashev A V. Radiation Damage Theory in Comprehensive Nuclear Materials, Elsevier, Netherlands, 2012.
31 Norgett M, Robinson M, Torrens I.Nuclear Engineering and Design, 1975, 33(1),50.
32 Zhao S, Liu B, Samolyuk G D, et al.Journal of Nuclear Materials, 2020, 529,151941.
33 Liu B, Yuan F, Jin K, et al.Journal of Physics: Condensed Matter, 2015, 27(43), 435006.
34 Do H S, Lee B J. Scientific Reports, 2018, 8(1), 1.
35 Ullah M W, Aidhy D S, Zhang Y, et al.Acta Materialia, 2016, 109,17.
36 Levo E, Granberg F, Fridlund C, et al.Journal of Nuclear Materials, 2017, 490,323.
37 Ikeda Y, Grabowski B, Körmann F.Materials Characterization, 2019, 147,464.
38 Granberg F, Nordlund K, Ullah M W, et al.Physical Review Letters, 2016, 116(13), 135504.
39 Zhao S.Journal of Materials Research, DOI: 10.1557/jmr.2019.339.
40 Osetsky Y N, Béland L K, Stoller R E.Acta Materialia, 2016, 115,364.
41 Zhao S, Osetsky Y, Zhang Y.Acta Materialia, 2017, 128,391.
42 Zhao S, Egami T, Stocks G M, et al.Physical Review Materials, 2018, 2(1), 013602.
43 Piochaud J, Klaver T, Adjanor G, et al.Physical Review B, 2014, 89(2),024101.
44 Li C, Yin J, Odbadrakh K, et al.Journal of Applied Physics, 2019, 125(15),155103.
45 Guan H, Huang S, Ding J, et al.Acta Materialia, 2020, 187,122.
46 Fan Z, Zhao S, Jin K, et al.Acta Materialia, 2019, 164,283.
47 Chen W, Ding X, Feng Y, et al.Journal of Materials Science & Technology, 2018, 34(2), 355.
48 Zhao S, Velisa G, Xue H, et al.Acta Materialia, 2017, 125,231.
49 Lu C, Niu L, Chen N, et al.Nature Communications, 2016, 7,13564.
50 Norgett M, Robinson M, Torrens I.Annual book of ASTM standards, ASTM,USA,1975.
51 Lennartz R, Dworschak F, Wollenberger H. Journal of Physics F: Metal Physics, 1977, 7(10), 2011.
52 Zhao S, Osetsky Y, Barashev A V, et al. Acta Materialia, 2019, 173,184.
53 Hull D, Bacon D J.Introduction to dislocations, Elsevier, Netherlands, 2011.
54 Greenwood G, Foreman A, Rimmer D. Journal of Nuclear Materials, 1959, 1(4), 305.
55 Terentyev D, Lagerstedt C, Olsson P, et al. Journal of Nuclear Materials, 2006, 351(1-3), 65.
56 Zhao S, Weber W J, Zhang Y. JOM, 2017, 69(11), 2084.
57 Dettmann K, Leibfried G, Schroeder K. Physica Status Solidi (b), 1967, 22(2),423.
58 Was G.Nuclear engineering and radiological sciences, Springer, Berlin, Heidelberg, New York, 2007.
59 Konings R.Comprehensive nuclear materials, Elsevier, Netherlands, 2011.
60 Zhao S, Osetsky Y N, Zhang Y.Journal of Alloys and Compounds, 2017, 701,1003.
61 Zhao S, Osetsky Y, Zhang Y.Physical Review Materials, 2019, 3(10), 103602.
62 Osetsky Y N, Bacon D J.Modelling and Simulation in Materials Science and Engineering, 2003, 11 (4), 427.
63 Zhao S, Chen D, Kai J J. Materials Research Letters, 2019, 7(5),188.
64 Ren X, Shi P, Zhang W, et al.Acta Materialia, 2019, 180,189.
[1] 李锐, 曾令碧, 刘腾, 王晓杰, 杨平安. 不同温度下纯Ni/NiTi合金的摩擦特性研究[J]. 材料导报, 2020, 34(Z1): 297-303.
[2] 吴韬, 段佳伟, 陈小明, 俞立涛, 陈云祥, 石淑琴. 合金元素对激光熔覆高熵合金涂层影响的研究进展[J]. 材料导报, 2020, 34(Z1): 413-419.
[3] 陶继闯, 卢一平. Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8096-8099.
[4] 林铁贵, 张玉芬. 晶格畸变对VO2相变温度的影响[J]. 材料导报, 2020, 34(6): 6057-6061.
[5] 谭雅琴, 王晓明, 朱胜, 乔珺威. 高熵合金强韧化的研究进展[J]. 材料导报, 2020, 34(5): 5120-5126.
[6] 王晴, 康升荣, 吴丽梅, 张强, 丁兆洋. 地聚合物凝胶结构建模及分子动力学模拟[J]. 材料导报, 2020, 34(4): 4056-4061.
[7] 郭丽婷, 李晓延, 姚鹏, 李扬. 电场作用下Cu/Cu3Sn界面原子扩散行为的分子动力学模拟[J]. 材料导报, 2020, 34(2): 2137-2141.
[8] 贾岳飞, 王刚, 贾延东, 伍诗伟, 穆永坤, 徐龙, 张靓博, 徐立明. 轻质高熵合金研究现状[J]. 材料导报, 2020, 34(17): 17003-17017.
[9] 靳柯, 卢晨阳, 豆艳坤, 贺新福, 杨文. 高熵合金辐照损伤的实验研究进展[J]. 材料导报, 2020, 34(17): 17018-17030.
[10] 陈刚, 罗涛, 沈书成, 陶韬, 唐啸天, 薛伟, 夏义. 基于铝热反应FeCrNiCuAlSn0.5高熵合金涂层的制备[J]. 材料导报, 2020, 34(17): 17047-17051.
[11] 魏仕勇, 彭文屹, 赵文超, 康依凡, 陈斌, 鲍蓉蓉, 邓晓华. 等离子熔覆CoCrFeMnNi高熵合金涂层参数优化及组织与性能研究[J]. 材料导报, 2020, 34(17): 17052-17057.
[12] 王雪姣, 乔珺威, 吴玉程. 高熵合金:面向聚变堆抗辐照损伤的新型候选材料[J]. 材料导报, 2020, 34(17): 17058-17066.
[13] 田梦云, 吴长军, 刘亚, 彭浩平, 王建华, 苏旭平. CoxMn2-xCrFeNi高熵合金的相稳定性[J]. 材料导报, 2020, 34(17): 17067-17071.
[14] 白莉, 王宇哲, 吕煜坤, 颜屹, 付梅文. 碳对无Co高熵合金Fe40Mn30Ni10Cr10Al10组织以及力学性能的影响[J]. 材料导报, 2020, 34(17): 17072-17076.
[15] 黄思睿, 伍昊, 朱和国. 共晶高熵合金的研究进展[J]. 材料导报, 2020, 34(17): 17077-17081.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed