Please wait a minute...
材料导报  2020, Vol. 34 Issue (17): 17067-17071    https://doi.org/10.11896/cldb.19120159
  高熵合金 |
CoxMn2-xCrFeNi高熵合金的相稳定性
田梦云1, 吴长军1,2, 刘亚1,2, 彭浩平1, 王建华1,2, 苏旭平1,2
1 常州大学材料科学与工程学院,江苏省材料表面科学与技术重点实验室,常州 213164
2 常州大学光伏科学与工程江苏协同创新中心,常州 213164
Phase Stability of the CoxMn2-xCrFeNi High Entropy Alloys
TIAN Mengyun1, WU Changjun1,2, LIU Ya1,2, PENG Haoping1, WANG Jianhua1,2, SU Xuping1,2
1 Jiangsu Key Laboratory of Materials Surface Science and Technology, School of Materials Science and Engineering, Changzhou University,Changzhou 213164,China
2 Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
下载:  全 文 ( PDF ) ( 3222KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作通过磁控电弧炉制备了一系列CoxMn2-xCrFeNi(x=0.25—1.75)高熵合金,并利用XRD、SEM、EDS、DSC等手段研究了这些合金在铸态、800 ℃和1 000 ℃退火720 h后的相稳定性。研究发现,Co含量不低于15%(原子分数)的CoxMn2-xCrFeNi合金在铸态及800 ℃和1 000 ℃退火720 h后均为FCC单相。铸态Co0.25Mn1.75CrFeNi为FCC+BCC两相,但经800 ℃或1 000 ℃退火720 h后,该合金中的BCC相消失,Cr元素富集,转变为FCC+σ相。在800 ℃退火720 h后的Co0.5Mn1.5CrFeNi不仅从FCC基体中析出了σ相,还析出了富Cr的BCC相。DSC测试表明,FCC相的开始熔化温度随Co含量的增加而升高;σ相将在1 097~1 120 ℃分解。此外,基于TCFE数据库的热力学计算结果表明,虽然通过计算可以较准确地预测FCC相的稳定性,但是不能准确地预测BCC相和σ相的稳定性。也就是说,Co-Cr-Fe-Mn-Ni体系中σ相和BCC相的热力学模型参数还需要进一步优化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田梦云
吴长军
刘亚
彭浩平
王建华
苏旭平
关键词:  Co-Cr-Fe-Ni-Mn  高熵合金  退火  相稳定性  σ相    
Abstract: The phase stability of arc-melted CoxMn2-xCrFeNi (x=0.25—1.75) high entropy alloys in as-cast and 800 ℃ or 1 000 ℃ annealed states were investigated using XRD, SEM, EDS, and DSC. It was found that the CoxMn2-xCrFeNi alloy with more than 15at% Co had a FCC single phase in as-cast state or after annealing at 800 ℃ or 1 000 ℃ for 720 h. The as-cast Co0.25Mn1.75CrFeNi alloy was composed of FCC+BCC two-phase. However, after annealing at 1 000 ℃ or 800 ℃ for 720 h, the BCC phase disappeared, and the Cr element enriched and transformed into FCC+σ phases. In 800 ℃ annealed Co0.5Mn1.5CrFeNi alloy, not only σ phase but also Cr-rich BCC phase was precipitated from the as-cast FCC matrix. DSC measurements showed that the transition point of FCC phase increased with the increasing of Co content, and the σ phase would decompose at 1 097—1 120 ℃. In addition, although thermodynamic calculation based on TCFE database could accurately predict the stability of FCC phase, it could not accurately predict the stability of BCC phase and σ phase. That is to say, the thermodynamic parameters of the σ and BCC phases in Co-Cr-Fe-Mn-Ni system still need to be further optimized.
Key words:  Co-Cr-Fe-Ni-Mn    high entropy alloys    annealing    phase stability    σ phase
               出版日期:  2020-09-10      发布日期:  2020-09-02
ZTFLH:  TG113.12  
基金资助: 国家自然科学基金(51771035;51671036)
通讯作者:  wucj@cczu.edu.cn   
作者简介:  田梦云,常州大学材料科学与工程学院硕士研究生。在吴长军副教授指导下进行研究。目前主要研究领域为高性能金属材料。
吴长军,常州大学材料科学与工程学院副教授,硕士研究生导师。2011年6月毕业于湘潭大学,获工学博士学位;2015—2016年在韩国浦项科技大学进行博士后研究工作。主要从事高性能金属材料、合金相图及材料设计、材料表面处理等方面的研究。近年来,先后发表SCI/EI收录论文40余篇,曾获教育部科技进步二等奖。
引用本文:    
田梦云, 吴长军, 刘亚, 彭浩平, 王建华, 苏旭平. CoxMn2-xCrFeNi高熵合金的相稳定性[J]. 材料导报, 2020, 34(17): 17067-17071.
TIAN Mengyun, WU Changjun, LIU Ya, PENG Haoping, WANG Jianhua, SU Xuping. Phase Stability of the CoxMn2-xCrFeNi High Entropy Alloys. Materials Reports, 2020, 34(17): 17067-17071.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120159  或          http://www.mater-rep.com/CN/Y2020/V34/I17/17067
1 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6 (5), 299.
2 Tung C C, Yeh J W, Shun T T, et al. Materials Letters, 2007, 61 (1), 1.
3 Pradeep K G, Wanderka N, Choi P, et al. Acta Materialia, 2013, 61 (12), 4696.
4 Tsai M H, Yeh J W. Materials Research Letters,2014, 2 (3), 107.
5 Sun Y, Wu C J, Liu Y, et al. Materials Reports A:Review Papers, 2019, 33 (4), 1169 (in Chinese).
孙娅,吴长军,刘亚,等. 材料导报:综述篇, 2019, 33(4), 1169.
6 Li A M, Shi J Z, Xie M K. Materials Reports A:Review Papers, 2018, 32(2), 461(in Chinese).
李安敏,史君佐,谢明款. 材料导报:综述篇, 2018, 32(2), 461.
7 Dong Y, Lu Y, Kong J, et al. Journal of Alloys and Compounds, 2013, 573,96.
8 Tong Y, Chen D, Han B, et al. Acta Materialia, 2019, 165, 228.
9 Gludovatz B, Hohenwarter A, Catoor D, et al. Science, 2014, 345 (6201), 1153.
10 Zhang Y, Zuo T T, Tang Z, et al. Progress in Materials Science, 2014, 61, 1.
11 Pradeep K G, Tasan C C, Yao M J, et al. Materials Science and Engineering: A, 2015, 648, 183.
12 Bracq G, Laurent-Brocq M, Perrière L, et al. Acta Materialia, 2017, 128, 327.
13 Cantor B, Chang I T H, Knight P, et al. Materials Science and Enginee-ring: A, 2004, 375-377, 213.
14 Ma D, Yao M, Pradeep K G, et al. Acta Materialia, 2015, 98, 288.
15 Shahmir H, He J, Lu Z, et al. Materials Science and Engineering: A, 2016, 676, 294.
16 Schuh B, Mendez-Martin F, Völker B, et al. Acta Materialia, 2015, 96, 258.
17 Otto F, Dlouhy A, Pradeep K G, et al. Acta Materialia, 2016, 112, 40.
18 Pickering E J, Muñoz-Moreno R, Stone H J, et al. Scripta Materialia, 2016, 113, 106.
19 Laplanche G, Berglund S, Reinhart C, et al. Acta Materialia,2018, 161, 338.
20 Zhu Z G, Ma K H, Yang X, et al. Journal of Alloys and Compounds, 2017, 695, 2945.
21 Zhou W, Fu L M, Liu P, et al. Intermetallics, 2017, 85, 90.
22 Ming K, Bi X, Wang J. Materials Characterization, 2017, 134, 194.
23 Park N, Lee B J, Tsuji N. Journal of Alloys and Compounds, 2017, 719, 189.
24 Yakel H L. Acta Crystallographica B, 1983, B39, 20.
25 Bloomfield M E, Christofidou K A, Jones N G. Intermetallics, 2019, 114, 106582.
26 Tian M Y, Wu C J, Liu Y, et al. Journal of Alloys and Compounds,2019, 811, 152025.
27 Joubert J M. Progress in Materials Science, 2008, 53(3), 528.
28 Xiong W, Selleby M, Chen Q, et al. Critical Reviews in Solid State and Materials Sciences, 2010, 35(2), 125.
29 Li Z, Mao H, Korzhavyi P A, et al. Calphad, 2016, 52, 1.
30 Wu C J, Sun Y, Liu Y, et al. Materials, 2019, 12(10), 1700.
31 Vaidya M, Trubel S, Murty B S, et al. Journal of Alloys and Compounds, 2016, 688, 994
[1] 郭德双, 王登魁, 王新伟, 孟兵恒, 方铉, 房丹, 魏志鹏. 氢气退火对ITO纳米颗粒能带结构的影响[J]. 材料导报, 2020, 34(Z1): 26-28.
[2] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[3] 黄同瑊, 秦宇, 晁代义, 王志雄, 宋晓霖, 张华, 程仁策. 大尺寸Al-Cu-Mg-Mn合金铸锭均匀化工艺研究[J]. 材料导报, 2020, 34(Z1): 325-327.
[4] 吴韬, 段佳伟, 陈小明, 俞立涛, 陈云祥, 石淑琴. 合金元素对激光熔覆高熵合金涂层影响的研究进展[J]. 材料导报, 2020, 34(Z1): 413-419.
[5] 陶继闯, 卢一平. Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8096-8099.
[6] 谭雅琴, 王晓明, 朱胜, 乔珺威. 高熵合金强韧化的研究进展[J]. 材料导报, 2020, 34(5): 5120-5126.
[7] 李红,邢增程,Erika Hodúlová,胡安明,Wolfgang Tillmann. 退火处理工艺在纳米多层膜材料研究中的应用进展[J]. 材料导报, 2020, 34(3): 3099-3105.
[8] 张国忠,李艳辉,吴立成,张伟. Fe基纳米晶软磁合金退火脆性的研究进展[J]. 材料导报, 2020, 34(3): 3165-3171.
[9] 贾岳飞, 王刚, 贾延东, 伍诗伟, 穆永坤, 徐龙, 张靓博, 徐立明. 轻质高熵合金研究现状[J]. 材料导报, 2020, 34(17): 17003-17017.
[10] 靳柯, 卢晨阳, 豆艳坤, 贺新福, 杨文. 高熵合金辐照损伤的实验研究进展[J]. 材料导报, 2020, 34(17): 17018-17030.
[11] 徐彪, 付上朝, 赵仕俊, 贺新福. 高熵合金辐照性能的计算机模拟进展[J]. 材料导报, 2020, 34(17): 17031-17040.
[12] 陈刚, 罗涛, 沈书成, 陶韬, 唐啸天, 薛伟, 夏义. 基于铝热反应FeCrNiCuAlSn0.5高熵合金涂层的制备[J]. 材料导报, 2020, 34(17): 17047-17051.
[13] 魏仕勇, 彭文屹, 赵文超, 康依凡, 陈斌, 鲍蓉蓉, 邓晓华. 等离子熔覆CoCrFeMnNi高熵合金涂层参数优化及组织与性能研究[J]. 材料导报, 2020, 34(17): 17052-17057.
[14] 王雪姣, 乔珺威, 吴玉程. 高熵合金:面向聚变堆抗辐照损伤的新型候选材料[J]. 材料导报, 2020, 34(17): 17058-17066.
[15] 白莉, 王宇哲, 吕煜坤, 颜屹, 付梅文. 碳对无Co高熵合金Fe40Mn30Ni10Cr10Al10组织以及力学性能的影响[J]. 材料导报, 2020, 34(17): 17072-17076.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed