Please wait a minute...
材料导报  2020, Vol. 34 Issue (17): 17041-17046    https://doi.org/10.11896/cldb.20050264
  高熵合金 |
FCC/L12共格高熵高温合金的研究进展
姚宏伟1,2, 卢一平1, 曹志强1, 王同敏1, 李廷举1
1 大连理工大学材料科学与工程学院,辽宁省凝固控制与数字化制备技术重点实验室,大连 116024
2 京都大学工学研究科,材料科学与工程系,京都 606-8501
A Review on High-entropy Superalloys with FCC/L12 Structure
YAO Hongwei1,2, LU Yiping1, CAO Zhiqiang1, WANG Tongmin1, LI Tingju1
1 Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Material Science and Engineering, Dalian University of Technology, Dalian 116024, China
2 Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501, Japan
下载:  全 文 ( PDF ) ( 2736KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高温合金是航空航天、能源等领域的高端装备核心热部件的关键材料。多年来,研究人员通过微合金化和先进制造工艺等方法,不断提升传统高温合金的性能,但由于受到合金主元的熔点限制,当前先进高温合金的性能已接近其极限。自2004年以来,高熵合金作为一种新型的合金体系表现出优异的综合性能,得到了广泛关注。高熵合金包含多种主元,在性能上的鸡尾酒效应可以融合各个主元的特点,突破了单一主元对合金性能的限制。
   随着对材料性能需求的不断提高,高熵合金也不仅限于单相固溶体,近年来也开发了大量第二相强化的高熵合金。其中,高熵高温合金结合了高熵合金多主元设计思想和传统高温合金共格析出的结构特点,表现出稳定的FCC/L12相结构和优异的高温性能,为新型高温结构材料的开发提供了希望。
   然而,高熵高温合金的相形成规律缺乏可靠的理论,强化和变形机理缺乏系统研究。此外,高温材料在环境中的表面稳定性是在工程应用中衡量材料性能的重要指标,而相关研究较少。近年来,研究人员基于已有的合金设计经验和计算机模拟方法,开发了一系列高熵高温合金,通过添加多种合金化元素不断提高材料的高温性能,研究了L12相的析出形貌和热稳定性、FCC/L12间的晶格错配度等对高温强度、蠕变性能的影响,并且对一些综合性能优异的高熵高温合金进行了高温氧化和热腐蚀测试,推进了高温高熵合金的工业化应用。
   本文归纳了高熵高温合金的研究进展,分别对相形成规律、力学性能、高温氧化和热腐蚀等进行了简单介绍,分析了变形机制、氧化和热腐蚀机理,指明了未来高熵高温合金的发展方向,以期为高熵高温合金的研发和工程应用提供一定的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚宏伟
卢一平
曹志强
王同敏
李廷举
关键词:  高熵高温合金  FCC/L12共格析出  高温蠕变  抗氧化性能  高温热腐蚀    
Abstract: Superalloys are unique high-temperature materials widely used in the aerospace and energy industry. The performance of conventional supe-ralloys has been improved by alloying and advanced manufacturing processes during the past decades. However, operating temperatures are now reaching limits posed by the melting temperatures of these materials. Since 2004, a new alloy design and development philosophy—high-entropy alloys (HEAs), or multi-principle-element alloys (MPEAs)—has attracted significant attention. The four core effects of HEAs, including high configurational entropy, sluggish diffusion, severe lattice distortion, and cock-tail effect, are mainly responsible for the various physical and mechanical properties.
To develop higher performance of HEAs, precipitation strengthening has been widely applied in HEAs and is proved to be effective in strengthening or toughening. Based on the HEA concept and the coherent microstructure of FCC/L12, a series of high-entropy superalloys (HESAs) has been developed with high strength and long-time microstructural stabilities at high temperatures.
However, the work about phase formation of HESAs were few, and the mechanisms of strengthening and deformation still lacked systematic research. In addition, the surface stability of materials at elevated temperature is an important indicator in engineering applications, but there were few studies. Recently, researchers have developed a series of HESAs based on the empirical phase formation rules and computer simulation methods. The effects of morphology and stability for the L12 precipitated phase, the lattice mismatch, etc. on high-temperature performance, such as high strength and creep property were studied. Moreover, the surface stability of some HESAs were investigated in oxidizing and corrosive environments.
The present work summarizes the research progress of HESAs. The phase formation, mechanical properties, high temperature oxidation and corrosion are briefly reviewed. Finally, the future perspective of HESAs is prospected.
Key words:  high-entropy superalloys    FCC/L12 coherent precipitation    high temperature creep    antioxidant property    high temperature corrosion
               出版日期:  2020-09-10      发布日期:  2020-09-02
ZTFLH:  TG132.3+2  
基金资助: 国家自然科学基金项目(51822402;51671044);国家科技支撑计划项目(2019YFA0209901;2018YFA0702901);西北工业大学凝固技术国家重点实验室资助项目(SKLSP201902);兴辽英才计划项目(XLYC1807047);国家MCF能源研发计划项目(2018YFE0312400);国家建设高水平大学公派研究生项目
通讯作者:  luyiping@dlut.edu.cn   
作者简介:  姚宏伟,2017年6月毕业于太原理工大学,获得硕士学位。现为大连理工大学与日本京都大学联合培养博士研究生,在卢一平教授和乾晴行教授的共同指导下进行研究。目前主要研究领域为高熵合金的成分设计、变形机制以及性能优化。
卢一平,大连理工大学材料科学与工程学院副院长,科技部中青年科技创新领军人才、国家优青、首届“兴辽英才计划”辽宁省青年拔尖人才、大连市杰出青年基金获得者、大连市青年科技之星、中国材料研究学会凝固科学与技术分会理事、副秘书长、空间材料科学与技术分会理事、中国材料研究学会青年工作委员会常务理事、Acta Metallurgica Sinica期刊编委等。近5年谷歌学术总引用近3 000次,H指数29,高被引文章3篇,授权发明专利8项。获2018年度辽宁省自然成果学术成果奖一等奖(排名1)、中国物理学会同步辐射分会“青年之光”论文奖;2019武汉中国材料学会“新材料国际趋势”分会青年科学家论坛“优秀青年科学家奖”;2019中国材料大会“非晶与高熵合金”分会“Outstanding Young Scientist”奖;获2015年度教育部技术发明一等奖(排4)、国家技术发明二等奖(排4)。目前主要从事高熵合金的成分设计理论以及工业化制备技术研究。
引用本文:    
姚宏伟, 卢一平, 曹志强, 王同敏, 李廷举. FCC/L12共格高熵高温合金的研究进展[J]. 材料导报, 2020, 34(17): 17041-17046.
YAO Hongwei, LU Yiping, CAO Zhiqiang, WANG Tongmin, LI Tingju. A Review on High-entropy Superalloys with FCC/L12 Structure. Materials Reports, 2020, 34(17): 17041-17046.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050264  或          http://www.mater-rep.com/CN/Y2020/V34/I17/17041
1 Guo J T. Materials science and engineering for superalloys (applied basic theory), Science Press, China, 2008 (in Chinese).
郭建亭. 高温合金材料学:应用基础理论, 科学出版社, 2008.
2 Gianfrancesco A D.Materials for ultra-supercritical and advanced ultra-supercritical power plants, Woodhead Press, UK, 2016.
3 Perepezko J H.Science, 2009, 326(5956), 1068.
4 Yeh J W. Chen S K, Lin S J, et al.Advanced Engineering Materials, 2004, 6(5), 299.
5 Cantor B, Chang I, Knight P, et al.Materials Science and Engineering: A,2004, 375, 213.
6 Yeh J W. Annales de Chimie Science des Matériaux, 2006, 31(6), 633.
7 Lu Y P, Gao X X, Jiang L, et al.Acta Materialia, 2017, 124, 143.
8 Chuang M H, Tsai M H, Wang W R, et al.Acta Materialia, 2011, 59(16), 6308.
9 Yao H W, Qiao J W, Hawk J A, et al.Journal of Alloys and Compounds, 2017, 696, 1139.
10 Chen Y Y, Duval T, Hung U D, et al.Corrosion Science, 2005, 47, 2257.
11 Nong Z S, Lei Y N, Zhu J C.Intermetallics, 2018, 101,144.
12 Lu Y P, Huang H, Gao X X, et al.Journal of Materials Science & Technology, 2019, 35(3), 369.
13 Argon A.Strengthening mechanisms in crystal plasticity, Oxford University Press, USA, 2008.
14 Gao M C, Yeh J W, Liaw P K, et al.High-entropy alloys: fundamentals and applications, Springer International Press, Switzerland, 2016.
15 Miracle D, Majumdar B, Wertz K, et al.Scripta Materialia, 2017, 127, 195.
16 Wen C, Zhang Y, Wang C, et al.Acta Materialia, 2019, 170, 109.
17 Wen X C, Zhang F, Lei Z F, et al. Materials China, 2019, 38(3), 242 (in Chinese).
温晓灿,张凡, 雷智锋, 等. 中国材料进展, 2019, 38(3), 242.
18 Soni V, Gwalani B, Alam T, et al.Acta Materialia, 2020, 185, 89.
19 Wang Q, Li Z, Pang S, et al.Entropy, 2018, 20(11), 878.
20 Yeh A C, Tsao T K, Chang Y, et al.International Journal of Metallurgical & Materials Engineering, 2015, 1, 107.
21 Tsao T K, Yeh A C, Kuo C M, et al. Advanced Engineering Materials, 2017, 19(1), 1600475.
22 Tsao T K, Yeh A C, Murakami H.Metallurgical and Materials Transactions A, 2017, 48(5), 2435.
23 Tsao T K, Yeh A C, Kuo C M, et al.Scientific Reports, 2017, 7(1), 1.
24 Zhang L, Zhou Y, Jin X, et al.Scripta Materialia, 2018, 146, 226.
25 Antonov S, Detrois M, Tin S.Metallurgical and Materials Transactions A, 2018, 49(1), 305.
26 Ming K, Bi X, Wang J.International Journal of Plasticity, 2018, 100, 177.
27 Peng H, Hu L, Li L, et al.Materials Science and Engineering: A, 2020, 772, 138803.
28 Lu Y P, Dong Y, Jiang L, et al.Entropy, 2015, 17(4), 2355.
29 Ardell A.Metallurgical Transactions A, 1985, 16(12), 2131.
30 Gerold V, Haberkorn H.Physica Status Solidi B, 1966, 16(2), 675.
31 Nembach E.Physica Status Solidi A, 1983, 78(2), 571.
32 Jansson B, Melander A.Scripta Metallurg, 1978, 12(6), 497.
33 Sun R, Woodward C, Axel van de Walle.Physical Review B, 2017, 95(21), 214121.
34 Nabarro F R N, Villiers F De.Physics of creep and creep-resistant alloys, CRC Press, UK & USA, 1995.
35 Shang S, Zacherl C, Fang H, et al.Journal of Physics: Condensed Matter, 2012, 24(50), 505403.
36 Huang S, Li W, Lu S, et al.Scripta Materialia, 2015, 108, 44.
37 Zaddach A, Scattergood R, Koch C.Materials Science and Engineering: A, 2015, 636, 373.
38 Tsao T K, Yeh A C, Kuo C M, et al.Entropy, 2016, 18(2), 62.
39 Yang X M, An Z B, Chen Y H.Materials Reports, 2019, 33(Z2), 348 (in Chinese).
杨晓萌, 安子冰, 陈艳辉. 材料导报, 2019, 33(Z2), 348.
40 Donachie M J, Donachie S J.Superalloys: a technical guide, ASM International Press, USA, 2002.
41 Sequeira C A.High temperature corrosion: fundamentals and engineering, John Wiley & Sons Press, USA, 2019.
42 Bornstein N S, Decrescente M A.Corrosion, 1970, 26(7), 309.
43 Bornstein N S, Decrescente M A.Metallurgical Transactions, 1971, 2(10), 2875.
44 Praveen S, Kim H S. Advanced Engineering Materials, 2018, 20(1), 1700645.
45 Chen H L, Mao H, Chen Q. Materials Chemistry and Physics, 2018, 210, 279.
46 Huang W, Martin P, Zhuang H L.Acta Materialia, 2019, 169, 225.
47 Zhang R, Zhao S, Ding J, et al. Nature, 2020, 581(7808), 283.
48 Ma E.Scripta Materialia, 2020, 181, 127.
[1] 卢国锋. Si-O-C界面对C/Si-C-N复合材料性能的影响*[J]. 《材料导报》期刊社, 2017, 31(16): 121-124.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed