Please wait a minute...
材料导报  2020, Vol. 34 Issue (11): 11137-11144    https://doi.org/10.11896/cldb.19050148
  金属与金属基复合材料 |
钚中氦行为研究进展
肖瑶, 黄理, 邱睿智, 叶小球, 敖冰云
中国工程物理研究院,绵阳621000
Progress in the Behavior of Helium in Plutonium
XIAO Yao, HUANG Li, QIU Ruizhi, YE Xiaoqiu, AO Bingyun
China Academy of Engineering Physics, Mianyang 621000, China
下载:  全 文 ( PDF ) ( 5963KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 中国工程物理研究院,绵阳621000
钚是一种应用广泛的核材料。作为放射性元素,钚会自发衰变成铀核,同时产生α粒子(氦核),高速运动的衰变产物在晶格中激发离位,产生缺陷。由于最外层是满电子结构,氦难溶于金属。因此,钚持续自发衰变会在材料中累积大量的晶格损伤;同时由衰变产生的氦会在金属基体中与空位相结合,通过位错与晶界扩散,在基体中聚集、形核、长大,形成氦泡。含氦量的增加会使氦泡生长,但并不是无限制地长大;当氦含量很高时,氦泡会破裂,引起材料表面剥落;一定程度上,材料本身的性质决定了氦泡最后的大小。宏观上,氦的存在会使材料发生体积变化、延展性降低、脆性变大等物理老化现象,从而降低钚的使用性能、缩短其寿命。理解氦原子对钚结构性能的影响机制,探寻相应的抑制氦脆和氦损伤的有效措施,对钚材料老化效应的预测和评价具有重要的意义。
   目前,研究钚中的氦行为主要集中在实验和模拟两个方面。由于原材料本身的放射性和毒性,研究人员大多使用晶体结构、最外层电子结构或是某些力学性能与钚一致的模拟材料进行实验。研究发现,微观结构和成分的优化是调控钚抗老化的重要手段。通常,微观结构的变化中主要考察晶界和位错对材料中氦行为的影响,而成分的优化则是通过添加合金元素或改变相来进行研究。
   鉴于此,本文就氦对钚材料体积、电阻率、力学性能的影响, 以及氦在钚中的微观行为进行了综述,比较了不同方法在钚中氦行为研究方面的适用性,指出了进一步构建氦的微观状态与宏观性能之间对应关系的必要性以及可能的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖瑶
黄理
邱睿智
叶小球
敖冰云
关键词:    氦脆  老化  辐照损伤    
Abstract: Plutonium(Pu) is a kind of widely used nuclear material,which decays into a uranium nucleus, and an alpha particle (helium) at the same time. The decay products of high-speed motion excite the dislocations in the crystal lattice, creating defects. Because the outermost layer of the helium(He) is full of electronic structures, it is difficult to dissolve in the metal. This sustained spontaneous decay accumulates a large amount of lattice damage in the material. At the same time, the He generated by decay combines with the vacancies in the metal matrix, and accumulates, nucleates and grows in the material to form bubbles by dislocation and grain boundary diffusion. The increase in the amount of He will cause the growth of bubbles, but it is not an unrestricted growth. The mechanical properties of the material determine the final size of the bubble. When the content of He is high, the bubble may even rupture, and then the surface of the material will peel off. The presence of He causing phy-sical aging phenomena of the material such as the volume change, the ductility decrease and the brittleness increase, which reduces the perfor-mance and shortens the lifetime of the plutonium.Understanding the mechanism of the influence of He on the performance of plutonium and exploring the effective measures to inhibit brittle and He damage are of great significance for the safety evaluation of long-term storage.
At present, the research on the behavior of He in Pu is mainly through experiments and simulations. However, due to the radioactivity and toxi-city of Pu, researchers mostly use simulated materials of which crystal structures, outermost electronic structures or mechanical properties is same to Pu. From previous researches, it is found that the optimization of microstructure and composition are important means to regulate Pu an-tiaging. Generally, the change of microstructure mainly investigates the influence of grain boundaries and dislocations on the behavior of germa-nium in materials, while the optimization of components is studied by adding alloying elements or changing phases.
In this paper, the effects of He on the volume, electrical resistivity and mechanical properties of Pu as well as the microscopic behavior of He in plutonium are reviewed. The applicability of different methods in the study of the He behavior in the plutonium is compared. And the necessity of bridging the correlation between the microscopic state and the macro performance is suggested as well as the possible research directions.
Key words:  plutonium    helium embrittlement    aging    radiation damage
                    发布日期:  2020-05-13
ZTFLH:  TL11  
基金资助: 国家自然科学基金委青年项目(21401173;21771167;21371160)
通讯作者:  yexiaoqiu@caep.cn   
作者简介:  肖瑶,2017年中国矿业大学毕业,获得材料科学与技术工学学位。现中国工程物理研究院硕士在读,在叶小球副研究员的指导下进行研究,目前主要研究领域为核燃料循环与材料。
叶小球,2003年毕业于合肥工业大学材料物理专业,2012年毕业于中国工程物理研究院核燃料循环与材料专业并获工学博士学位,2013年在美国康奈尔大学作访问学者(导师Roald Hoffmann教授,1981年诺贝尔化学奖得主)。长期从事氢同位素、氦与材料的相互作用研究,曾先后主持了多项国防工业系统课题和国家自然科学基金项目;在储氢材料制备及性能测试、氢同位素分离与纯化、第一性原理计算等方面具有较为丰富的经验;近年来在相关领域发表论文30余篇,包括在Vaccum、Fusion Energy、J Phys. Chem. C等专业期刊上发表相关论文10余篇,并曾受邀作为Inorgan Chemistry和Int J Hydrogen Energy的审稿人。
引用本文:    
肖瑶, 黄理, 邱睿智, 叶小球, 敖冰云. 钚中氦行为研究进展[J]. 材料导报, 2020, 34(11): 11137-11144.
XIAO Yao, HUANG Li, QIU Ruizhi, YE Xiaoqiu, AO Bingyun. Progress in the Behavior of Helium in Plutonium. Materials Reports, 2020, 34(11): 11137-11144.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050148  或          http://www.mater-rep.com/CN/Y2020/V34/I11/11137
1 Wang P X, Song J S. Helium in materials and the permeation of tritium, National Defense Industry Press, China, 2002 (in Chinese).
王佩璇, 宋家树. 材料中的氦及氘渗透,国防工业出版社, 2002.
2 Xiang X. Effect of Fe and C doping on the behavior of helium in aluminum. Master's Thesis, China Academy of Engineering Physics, China, 2010 (in Chinese).
向鑫. Fe、C掺杂对铝中氦行为的影响. 硕士学位论文, 中国工程物理研究院, 2010.
3 Chen C A. Study on the behavior of helium in aluminum and stainless steel. Ph.D. Thesis, China Academy of Engineering Physics, China, 2003 (in Chinese).
陈长安. 铝和不锈钢中氦行为研究.博士学位论文, 中国工程物理研究院, 2003.
4 Dremov V, Sapozhnikov P, Kutepov A. Physical Review B, DOI: 10.1103/PhysRevB.77.224306.
5 Ao B Y, Wang X L, Chen P H, et al. Atomic Energy Science and Technology, 2009, 43(Supplement),37(in Chinese).
敖冰云, 汪小琳, 陈丕恒, 等. 原子能科学技术, 2009, 43(增刊),37.
6 Wang T Q, Yu W R, Feng Y F. Nuclear Physics Review, 2006(3),83(in Chinese).
王同权, 于万瑞, 冯煜芳.原子核物理评论, 2006(3),83.
7 Elliott R O, Olsen C E. Journal of Applied Physics, 1964, 35(6), 1925.
8 Troshev A V, Lyasota A M. The Physics of Metals and Metallography, 2010, 109(6),615.
9 Qin J W, Ao B Y, Shuai M B. Engineering Materials, 2015(3),6(in Chinese).
秦建伟, 敖冰云, 帅茂兵.工程材料,2015(3),6.
10 Yan S P, Yu Y, Wang L Y,et al. Acta Physico-Chimica Sinica, DOI:10.3866/PKU.WHXB2014Ac07 (in Chinese).
晏顺坪, 余勇, 王沪毅, 等. 物理化学学报, DOI:10.3866/PKU.WHXB2014Ac07.
11 Karavaev A V, Dremov V V, Ionov G V. Journal of Nuclear Materials, 2017, 496,85.
12 Jeffries J R, Wall M A, Moore K T. Journal of Nuclear Materials, 2011, 410,84.
13 Ao B, Chen P, Peng S, et al.Communications in Computational Physics, 2012, 11,1205.
14 Allen P G, Wolfer W G. United States: Lawrence Livermore National Lab, 2015, DOI:10.2172/1343027.
15 Peterson D E, Early J W, Starzynski J S, et al. United States: Los Alamos National Lab, 1984, DOI: 10.2172/6714899.
16 Jiang X M. Study on the atomic levels of nickel embrittlement induced by helium doping. Master's Thesis, Fudan University, China, 2007 (in Chinese).
姜晓梅. 氦掺杂诱发金属镍脆化的原子水平研究.硕士学位论文,复旦大学, 2007.
17 Ao B Y, Wang X L, Chen P H, et al. Acta Physica Sinica, 2010(7),422(in Chinese).
敖冰云,汪小琳,陈丕恒,等.物理学报, 2010(7),422.
18 Liu B L, Liu S, Wang L B. Atomic Energy Science and Technology,2008(9), 33(in Chinese).
刘本良, 刘实, 王隆保. 原子能科学技术, 2008(9), 33.
19 Hu Y C, Cao X Z, Li Y X, et al. Acta Physica Sinica, 2015(24),1(in Chinese).
胡远超,曹兴忠,李玉晓,等.物理学报, 2015(24),1.
20 Duan Y M. Study of nanocrystal films with helium and inner-shell ionization cross-sections using backscattering spectrometry. Master's Thesis, Sichuan University, China, 2006 (in Chinese).
段艳敏. 背散射分析技术在固氦材料及原子内壳层电离截面研究中的应用. 硕士学位论文,四川大学 2006.
21 Jia J P, Shi L Q, Lai X C, et al. Atomic Energy Science and Technology, 2006, 40(3),372 (in Chinese).
贾建平, 施立群,赖新春,等.原子能科学技术, 2006, 40(3),372.
22 Huang Z Q, Yan G Y, Xie L, et al. Nuclear Techniques, 2014, 37(9),090103 (in Chinese).
黄朝强, 闫冠云, 谢雷,等.核技术, 2014, 37(9),090103.
23 Huang Z Q. Study of helium behavior in Al and Ti alloys by small angle X-ray and neutron scattering. Ph.D. Thesis, University of Science and Technology of China, China, 2014 (in Chinese).
黄朝强. 铝和钛合金中氦行为的小角X射线和中子散射研究.博士学位论文,中国科学技术大学, 2014.
24 Prikhodko K , Emelyanova O, et al. Using EELS analysis in STEM to investigate the helium content in irradiated materials, Wiley‐VCH Verlag GmbH & Co. KGaA, 2016, DOI: 10.1002/9783527808465.EMC2016.5844.
25 Walls M. In:European Microscopy Congress 2016. 2016,pp.886.
26 Dremov V V, Sapozhnikov F A, Ionov G V, et al. Journal of Nuclear Materials, 2013, 440(1-3),278.
27 Zheng Hui, Sun Bo, Liu Haifeng, et al. Acta Physico-Chimica Sinica, 2015(Suppl.), 64 (in Chinese).
郑晖, 孙博, 刘海风, 等.物理化学学报, 2015(增刊), 64.
28 Wu F, Wang P, Liu X, et al. Journal of Nuclear Materials, 2017, 484, 7.
29 Xiang X Liu K Z, Chen C A. Materials Reports A:Review Papers, 2010, 24(2), 52(in Chinese).
向鑫, 刘柯钊, 陈长安. 材料导报:综述篇, 2010, 24(2), 52.
30 Wang L L, Wan M J, Jiang G, et al. Atomic Energy Science and Techno-logy, 2014, 48(S1),33(in Chinese).
王丽莉,万明杰,蒋刚,等. 原子能科学技术, 2014, 48(S1),33.
31 Zhu Z Q. Ab initio study of he point defects in fcc Au-Ag alloys. Master's Thesis, University of Electronic Science and Technology of China, China, 2013 (in Chinese).
朱自强. 氦在fcc金—银合金中行为的从头算研究. 硕士学位论文, 电子科技大学, 2013.
32 Xiang X, Chen C A, Liu K Z, et al. Rare Metal Materials and Engineering, 2009, 33(4),510(in Chinese).
向鑫,陈长安,刘柯钊, 等. 稀有金属, 2009, 33(4),510.
33 Kalashnikov A N, Chernov I I, Kalin B A, et al.Journal of Nuclear Materials, 2002, s307-311(1), 362.
34 Jeffries J R, Hammons J A, Willey T M.Journal of Nuclear Materials, DOI: 10.1016/j.jnucmat.2017.10.058.
35 Guo L P, Luo F F, Yu Y X. Dislocation loops in irradiated nuclear materials, National Defense Industry Press, China, 2017 (in Chinese).
郭立平,罗凤风,于雁霞. 核材料辐照位错环, 国防工业出版社, 2017.
36 Donnelly S E. Radiation Effects, 1985, 90(1-2), 1.
37 Allen P G,Wall M A,Wolfer W G. Generalized rate theory for void and bubble swelling and its application to Delta-Plutonium, United States, 2016.
38 Wiss T,Deschanels X,Hiernaut J P,et al. Journal of Nuclear Materials, 2007, 362(2-3),431.
39 Yu J N. Material irradiation effect,Chemical Industry Press, China, 2007 (in Chinese).
郁金南. 材料辐照效应,化学工业出版社, 2007.
40 Han L H, Shen L, Shi P, et al. In: Conference Record of the 2012 IEEE 11th National Conference on Positron Annihilation. 2012.
韩录会,申亮,史鹏,等. 全国正电子湮没谱学会议, 2012.
41 Stevens M F, Zocco T, Albers R. Los Alamos National Lab, 1998. DOI: 10.2172/296814
42 Wolfer W G, Per Soderlind, Landa A. Volume changes in δ-plutonium from helium and other decay products, Los Alamos Science,2000.
43 Hao J K. Fusion reactor material,Chemical Industry Press, China, 2006 (in Chinese).
郝嘉琨. 聚变堆材料, 化学工业出版社, 2006.
[1] 张勤玲, 黄志义. FTIR分峰拟合法定量分析沥青胶浆在含盐高温高湿环境中的结构变化[J]. 材料导报, 2020, 34(8): 8083-8089.
[2] 吴文博, 张志明, 王俭秋, 韩恩厚, 柯伟. 热老化316L不锈钢在模拟核电溶解氧/氢高温高压水中应力腐蚀裂纹扩展行为[J]. 材料导报, 2020, 34(6): 6144-6150.
[3] 张帅, 张健. 冷冻干燥法制备有机蒙脱土及其改性沥青性能研究[J]. 材料导报, 2020, 34(4): 4037-4042.
[4] 刘荣, 马玉宏, 赵桂峰, 王康康. 老化-海蚀循环作用下高阻尼橡胶隔震支座橡胶材料性能劣化规律[J]. 材料导报, 2020, 34(4): 4166-4173.
[5] 易鹏,吴国娟,段文焱,吴敏,潘波. 生物炭的改性和老化及环境效应的研究进展[J]. 材料导报, 2020, 34(3): 3037-3043.
[6] 周颖, 郭建兵, 何玮頔, 徐定红, 王蒙. 紫外老化对长玻纤增强聚丙烯复合材料流变性能和非等温结晶动力学的影响[J]. 材料导报, 2020, 34(12): 12146-12151.
[7] 赵可成, 陈宇, 黄考取. 基于核壳结构缓释剂和抗氧化剂的新型复合沥青抗老化剂研究[J]. 材料导报, 2019, 33(Z2): 261-266.
[8] 吴敏, 吴丹萍, 常兆峰, 许燕, 潘波. BPCA分子标志物法对土壤体系中生物炭性质的描述[J]. 材料导报, 2019, 33(3): 536-540.
[9] 张广泰, 陆东亮, 章金鹏, 张路杨, 易宝. 老化-荷载耦合下叠层轮胎隔震垫的竖向力学性能[J]. 材料导报, 2019, 33(18): 3140-3146.
[10] 王蒙, 宋海硕, 郭建兵. 阻燃型玻纤增强尼龙10T复合材料的热氧老化行为及热降解动力学[J]. 《材料导报》期刊社, 2018, 32(8): 1344-1351.
[11] 杨守禄, 罗莎, 章磊, 姬宁, 李丹, 吴义强. 木塑复合材料功能化改性研究进展[J]. 材料导报, 2018, 32(17): 3090-3098.
[12] 于江, 程龙, 李林萍, 叶奋, 宋卿卿. KSHD温拌剂对新疆岩沥青改性沥青老化动力特性的影响[J]. 《材料导报》期刊社, 2018, 32(14): 2418-2424.
[13] 崔亚楠,于庆年,韩吉伟,陈超. 复杂气候条件下胶粉改性沥青的低温性能[J]. 《材料导报》期刊社, 2018, 32(12): 2078-2084.
[14] 罗来马, 徐梦瑶, 昝祥, 朱晓勇, 李萍, 程继贵, 吴玉程. 不同辐照粒子下钨及钨合金辐照损伤行为的研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 41-46.
[15] 李海莲, 李波, 王起才, 李良英, 王永宁. 基于表面能理论的老化温拌SBS改性沥青结合料的粘附性*[J]. 《材料导报》期刊社, 2017, 31(16): 129-133.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed