Principle, Process and Prospect of Monocrystalline Silicon Growth with Czochralski Method
WANG Zhengxing1, REN Yongsheng1,2,*, MA Wenhui1,*, LYU Guoqiang1, ZENG Yi1, ZHAN Shu3, CHEN Hui2, WANG Zhe4
1 Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China 2 Department of Materials Engineering, The University of Tokyo, Tokyo 113-8656, Japan 3 School of Computer and Information, Hefei University of Technology, Hefei 230601, China 4 State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
Abstract: With the introduction of the concept of peak carbon dioxide emission and carbon neutrality, solar energy as a renewable green energy has attracted much attention. Monocrystalline silicon is main photovoltaic material, and its quality determines the efficiency of solar cells. High-quality monocrystal silicon is required to reduce costs and increase production capacity. Czochralski (CZ) method is main preparation method for monocrystalline silicon, with high production efficiency and automation. The market share of CZ-Si exceeds 90%. At present, it is developing toward large size, N-type, flake, low oxygen, and low carbon. However, as the size of crystal rod increases, the thermal field changes become more complex, and the existing CZ process is difficult to meet the market demand. In the future, reducing the cost of kilowatt-hour electricity is still the driving force for the development of crystalline silicon photovoltaic, and the development of photovoltaic should be promoted through technological innovation, industrial standardization, cost control, and other means. In this paper, the basic principle and growth process of monocrystalline silicon using CZ are first summarized. Defect control, thermal field optimization, and oxygen content control are analyzed. Finally, the process and future prospects of developing monocrystalline silicon using CZ are presented.
作者简介: 王正省,2021年6月毕业于昆明理工大学,获工学学士学位。现为昆明理工大学冶金与能源工程学院在读硕士研究生,在马文会教授、任永生副教授的指导下进行直拉法生长单晶硅数值模拟与热场优化的研究,授权专利3项,在International Journal of Heat and Mass Transfer、Journal of Alloys and Compounds、Vacuum等期刊上发表SCI论文4篇。
引用本文:
王正省, 任永生, 马文会, 吕国强, 曾毅, 詹曙, 陈辉, 王哲. 直拉法单晶硅生长原理、工艺及展望[J]. 材料导报, 2024, 38(9): 22100160-13.
WANG Zhengxing, REN Yongsheng, MA Wenhui, LYU Guoqiang, ZENG Yi, ZHAN Shu, CHEN Hui, WANG Zhe. Principle, Process and Prospect of Monocrystalline Silicon Growth with Czochralski Method. Materials Reports, 2024, 38(9): 22100160-13.
1 Ren Y S, Chen H, Zeng Y, et al. Vacuum, 2022, 201, 111081. 2 Wang J, Lin Y J, Wu C J, et al. Energy Storage Science and Technology, 2022, 11(2), 731 (in Chinese). 王捷, 林余杰, 吴成坚, 等.储能科学与技术, 2022, 11(2), 731. 3 Li W. Jiangsu Science & Technology Information, 2018, 35(24), 54 (in Chinese). 李伟.江苏科技信息, 2018, 35(24), 54. 4 Tsai C W, Liu T K, Hsueh P W. Energies, 2020, 13(12), 3060. 5 Zheng C, Kammen D M. Energy Policy, 2014, 67, 159. 6 Tyagi V V, Rahim N A A, Rahim N A, et al. Renewable and Sustainable Energy Reviews, 2013, 20, 443. 7 Jiang H. Solar Energy, 2022, 333(1), 5 (in Chinese). 江华. 太阳能, 2022, 333(1), 5. 8 Li Z G. Engineering, DOI:10.1016/j.eng.2022.07.008. 9 Wang W J. Solar Energy, 2020, 318(10), 5 (in Chinese). 王文静. 太阳能, 2020, 318(10), 5. 10 Ur Rehman A, Lee S H. The Scientific World Journal, 2013, 2013, 470347. 11 Chen J F, Zhao S S, Gao T, et al. Materials Reports, 2019, 33(1), 110 (in Chinese). 陈俊帆, 赵生盛, 高天, 等.材料导报, 2019, 33(1), 110. 12 Steinhauser B, Polzin J I, Feldmann F, et al. Solar RRL, 2018, 2(7), 1800068. 13 Richter A, Benick J, Feldmann F, et al. Solar Energy Materials and Solar Cells, 2017, 173, 96. 14 Adachi D, Hernández J, Yamamoto K. Applied Physics Letters, 2015, 107(23), 233506. 15 Taguchi M, Yano A, Tohoda S, et al. IEEE Journal of Photovoltaics, 2014, 4(1), 96. 16 Wei K F, Liu D W, Ni Y F, et al. Journal of Synthetic Crystals, 2021, 50(1), 66 (in Chinese). 魏凯峰, 刘大伟, 倪玉凤, 等. 人工晶体学报, 2021, 50(1), 66. 17 Richter A, Hermle M, Glunz S. IEEE Journal of Photovoltaics, 2013, 3(4), 1184. 18 Long W, Yin S, Peng F G,et al. Solar Energy Materials and Solar Cells, 2021, 231, 111291. 19 Qu X L, He Y C, Qu M H, et al. Nature Energy, 2021, 6(2), 194. 20 Yoshikawa K, Kawasaki H, Yoshida W, et al. Nature Energy, 2017, 2(5), 1. 22100160-1221 Yoshikawa K, Yoshida W, Irie T, et al. Solar Energy Materials and Solar Cells, 2017, 173, 37. 22 Wang X S. In: 15th China SoG Silicon and PV Power Conference, Shanghai, 2019(in Chinese). 王栩生. 第十五届中国太阳能级硅及光伏发电研讨会, 上海, 2019. 23 Chen H B, Yan Z R, Ku L M, et al. Material Sciences, 2020, 10(4), 234 (in Chinese). 陈海滨, 闫志瑞, 库黎明, 等. 材料科学, 2020, 10(4), 234. 24 Han X F, Lin X, Nakano S, et al. Crystal Research and Technology, 2018, 53(5), 1700246. 25 Wang Y J. The research and preparation on FZ single crystal silicon with large diameter.Master's Thesis, Hebei University of Technology, China, 2015 (in Chinese). 王彦君. 大直径区熔硅单晶的研究与制备. 硕士学位论文, 河北工业大学, 2015. 26 Czochralski J. Zeitschrift für Physikalische Chemie, 1918, 92(1), 219. 27 Teal G K, Buehler E. Proceedings of the IRE, 1952, 40(8), 906. 28 Liu D. Growth process modeling and control of Czochralski silicon single crystal, Science Press, China, 2015, pp. 48 (in Chinese). 刘丁. 直拉硅单晶生长过程建模与控制, 科学出版社, 2015, pp. 48. 29 Yu Z L. Light Metals, 2006(2), 52. 30 Zeng Y, Ren Y S, Ma W H, et al. Progress in Chemistry, 2022, 34(4), 926 (in Chinese). 曾毅, 任永生, 马文会, 等. 化学进展, 2022, 34(4), 926. 31 Cao J W. Research on the key technology of CZ silicon crystal growth furnace.Master's Thesis, Zhejiang University, China, 2010 (in Chinese). 曹建伟. 直拉式单晶硅生长炉的关键技术研究. 硕士学位论文, 浙江大学, 2010. 32 Tilli M, Motooka T, Airaksinen V, et al. Handbook of Silicon Based MEMS Materials and Technologies. Elsevier, UK, 2015, pp. 18. 33 Satunkin G. Journal of Crystal Growth, 1995, 154(1-2), 172. 34 Taishi T, Hoshikawa K, Ohno Y, et al. Physica B: Condensed Matter, 2009, 404(23-24), 4612. 35 Taishi T, Huang X M, Wang T F, et al. Journal of Crystal Growth, 2002, 241(3), 277. 36 Dash W. Journal of Applied Physics, 1959, 30(4), 459. 37 Dash W. Journal of Applied Physics, 1960, 31(12), 2275. 38 Dash W. Journal of Applied Physics, 1958, 29(4), 736. 39 Kim K, Smetana P. Journal of Crystal Growth, 1990, 100(3), 527. 40 Lida T, Machida N, Takase N, et al. Journal of Crystal Growth, 2001, 229(1), 31. 41 Su W J, Li J L, Yang W. Journal of the Chinese Ceramic Society, 2021, 49(4), 723 (in Chinese). 苏文佳, 李九龙, 杨伟. 硅酸盐学报, 2021, 49(4), 723. 42 Hall R. Journal of Physical Chemistry A, 1953, 57(8), 836. 43 Rudolph P. Handbook of crystal growth: bulk crystal growth: basic techniques, Amsterdam: Elsevier, Netherlands, 2015, pp. 45. 44 Müller G, Métois J, Rudolph P. Crystal growth: from fundamentals to technology, Elsevier. Netherlands, 2004, pp. 27. 45 Voronkov V. Journal of Crystal Growth, 1981, 52(1), 311. 46 Kranert C, Raming G, Miller A, et al. Journal of Crystal Growth, 2021, 568, 126174. 47 Zhao H D, Zhai X T, Tian Z G, et al. Journal of Synthetic Crystals, 2020, 49(4), 607 (in Chinese). 赵华东, 翟晓彤, 田增国, 等. 人工晶体学报, 2020, 49(4), 607. 48 Reshef D, Reshef Y, Finucane H, et al. Science, 2011, 334(6062), 1518. 49 Zhang J, Liu D, Zhao Y, et al. Journal of Synthetic Crystals, 2013, 42(1), 58 (in Chinese). 张晶, 刘丁, 赵跃, 等. 人工晶体学报, 2013, 42(1), 58. 50 Pei Z J, Ji X F, Liu F. Journal of Semiconductors, 1998(3), 20(in Chinese). 裴志军, 纪秀峰, 刘峰.半导体杂志, 1998(3), 20. 51 Dong J M, Zhang B, Liu J, et al. Materials Reports, 2013, 27(S1), 157 (in Chinese). 董建明, 张波, 刘进, 等. 材料导报, 2013, 27(S1), 157. 52 Bukhari H, Hovd M, Winkler J. IFAC-PapersOnLine, 2019, 52(14), 126. 53 Hurle D. Journal of Crystal Growth, 1977, 42, 473. 54 Nguyen T H T, Chen J C, Lo S C. Journal of Crystal Growth, 2022, 583, 126546. 55 Zhao W, Li J, Liu L. Crystals, 2021, 11(3), 264. 56 Costa E C, Xavier F A, Knoblauch R. Solar Energy, 2020, 207, 640. 57 Chen K X, Liu Y Y, Wang X S, et al. Solar Energy Materials & Solar Cells, 2015, 133, 148. 58 Xiao H P, Wang H R, Yu N. Journal of Materials Processing Tech, 2019, 273, 116267 59 Liu S, Huang K, Zhu H. Separation and Purification Technology, 2017, 172, 113. 60 Choi S, Jang B, Kim J, et al. Solar Energy, 2016, 125, 198. 61 Buchwald R, Würzner S, Möller H, et al. Physica Status Solidi A, 2015, 212(1), 25. 62 Kalaeva V V, Evstratova I Y, Makarov Y N. Journal of Crystal Growth, 2003, 249(1-2), 87. 63 Ding J L, Liu L J. International Journal of Heat and Mass Transfer, 2019, 142, 118463. 64 Lipchin A, Brown R A. Journal of Crystal Growth, 2000, 216(1-4), 192. 65 Ding J L, Li Y Q, Liu L J. International Journal of Thermal Sciences, 2021, 170, 107137. 66 Chen J C, Guo P C, Chang C H, et al. Journal of Crystal Growth, 2014, 401(1), 888. 67 Liu X, Han X F, Nakano S, et al. Journal of Crystal Growth, 2018, 483, 241. 68 Lin G W, Wang S, Zhang X Y, et al. Journal of Synthetic Crystals, 2021, 50(8), 1541 (in Chinese). 林光伟, 王珊, 张西亚, 等. 人工晶体学报, 2021, 50(8), 1541. 69 Song D W, Lee S H, Mun Y H, et al. Journal of Crystal Growth, 2011, 325(1), 27. 70 Takano K, Shiraishi Y, Matsubara J, et al. Journal of Crystal Growth, 2001, 229(1), 26. 71 Teng Y Y, Chen J C, Lu C W, et al. International Journal of Photoenergy, 2012, 2012, 395235. 72 Chen J C, Teng Y Y, Wun W T, et al. Journal of Crystal Growth, 2011, 318(1), 318. 73 Huang L Y, Lee P C, Hsieh C K, et al. Journal of Crystal Growth, 2004, 261(4), 433. 74 Kamiyama E, Vanhellemont J, Sueoka K, et al. Applied Physics Letters, 2013, 102(8), 082108. 75 Mühe A, Müller G. Materials Science in Semiconductor Processing, 2000, 3(3), 185. 76 Coletti G. Progress in Photovoltaics: Research and Applications, 2013, 21(5), 1163. 77 Vorob'ev A, Sid'ko A P, Kalaev V V. Journal of Crystal Growth, 2014, 386, 226. 78 Trempa M, Reimann C, Friedrich J, et al. Journal of Crystal Growth, 2010, 312(9), 1517. 79 Zulehner W. Journal of Crystal Growth, 1983, 65(1-3), 189. 80 Nozaki T, Yatsurugi Y, Akiyama N, et al. Journal of Radioanalytical Chemistry, 1974, 19, 109. 81 Kishino S, Kanamori M, Yoshihiro N, et al. Journal of Applied Physics, 1979, 50(12), 8240. 82 Kishino S, Matsushita Y, Kanamori M. Applied Physics Letters, 1979, 35(3), 213. 83 Nagai Y, Nakagawa S, Kashima K. Journal of Crystal Growth, 2014, 401, 737. 84 Zhang J, Liu D, Zhao Y, et.al. Journal of Mechanical Engineering, 2014, 27(3), 504. 85 Adylov G T, Faiziev S A, Paizullakhanov M S, et al. Technical Physics Letters, 2003, 29(3), 221. 86 Sha M, Utkin Y A, Tushavina O V, et al. Periódico Tchê Química, 2020, 17(35), 988. 87 Zmij V I, Rudenkyi S G, Shepelev A G. Materials Sciences and Applications, 2015, 6(10), 879. 88 Sun J. Research on batch process modeling and diameter control of Czochralski silicon single crystal.Master's Thesis, Xian University of Techno-logy, China, 2021 (in Chinese). 孙杰. 直拉硅单晶批次过程建模与直径控制研究. 硕士学位论文, 西安理工大学, 2021. 89 Huang X M, Taishi T, Wang T F, et al. Journal of Crystal Growth, 2001, 229(1), 6. 90 Voronkov V. Journal of Crystal Growth, 1982, 59(3), 625. 91 Ammon W, Dornberger E, Oelkrug H, et al. Journal of Crystal Growth, 1995, 151(3-4), 273. 92 Sim B C, Jung Y H, Lee J E, et al. Journal of Crystal Growth, 2007, 299(1), 152. 93 Noghabi O A, M'hamdi M, Jomâa M. Journal of Crystal Growth, 2011, 318(1), 173. 94 Kirpo M. Journal of Crystal Growth, 2013, 371, 60. 95 Gao Y, Tu H L, Zhou Q G, et al. Rare Metals, 2007, 26(6), 607. 96 Nguyen T H T, Chen J C, Hu C, et al. Journal of Crystal Growth, 2019, 507(1), 50. 97 Li T, Zhao L, Lv G Q, et al. Silicon, 2022, 15(2), 1049. 98 Zeng Z D, Ma X Y, Chen J C, et al. Journal of Crystal Growth, 2010, 312(2), 169. 99 Kakimoto K, Liu X, Nakano S. Materials, 2022, 15(5), 1843. 100 Zhang X P, Gao C, Fu M S, et al. Journal of Applied Physics, 2013, 113(16), 163510. 101 Gao B, Juel M, Mhamdi M. Journal of Crystal Growth, 2016,453(1), 173. 102 Torbjorn C, Thomas B, August F. Journal of the Electrochemical Society, 1982, 129(1), 189. 103 Hoshikawa K, Huang X M. Materials Science and Engineering B, 2000, 72(2-3), 73. 104 Wang K, Koch H, Trempa M, et.al. Journal of Crystal Growth, 2021, 576, 126384. 105 Abe T, Takahashi T. Journal of Crystal Growth, 2011,334, 16. 106 Taguchi A, Kageshima H, Wada K. Journal of Applied Physics, 2005, 97(5), 053514.