Please wait a minute...
材料导报  2024, Vol. 38 Issue (9): 22100157-8    https://doi.org/10.11896/cldb.22100157
  无机非金属及其复合材料 |
3D打印再生砂浆早期流变性能及结构经时演化研究
刘超1,2,*, 蒙毅升1, 武怡文2, 刘化威2
1 西安建筑科技大学理学院,西安 710055
2 西安建筑科技大学土木工程学院, 西安 710055
Study on Early Rheological Properties and Structure Evolution of 3D Printed Recycled Mortar
LIU Chao1,2,*, MENG Yisheng1, WU Yiwen2, LIU Huawei2
1 School of Science, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 9455KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为深入探究再生砂浆在3D打印技术中的适用性,对不同取代率的再生砂浆开展研究,分析了再生砂浆的流/触变性在早期阶段的发展过程,采用数字图像技术对静载作用下3D打印试件的变形进行收集分析。结果表明:随着水化反应的进行,再生砂浆呈现较快的静态屈服应力和触变环面积的增长趋势,其20 min静态屈服应力为天然砂浆的1.47倍,表现出更好的可建造性。在荷载作用下再生砂浆打印试件的竖向突变高度损失和徐变位移明显较小,约为天然砂浆打印试件的1/2。根据再生砂表观特点揭示了水化过程中再生砂浆流/触变性的演化机理,从材料性能和3D打印试件结构空隙方面对3D打印试件在静载作用下的变形进行分析,为再生砂浆在3D打印中的使用提供理论支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘超
蒙毅升
武怡文
刘化威
关键词:  3D打印  再生砂浆  早期性能  流变性  强度演化    
Abstract: In order to further explore the applicability of recycled mortar in 3D printing technology, this work studies the mortar with different replacement rates of recycled sand. The development process of flow/thixotropy of recycled mortar in the early stage is analyzed, digital image technology is used to collect and analyze the deformation of 3D printed specimens under static load. The results show that with the progress of hydration reaction, the recycled mortar shows a rapid growth trend of static yield stress and thixotropic ring area. The static yield stress of 20 min is 1.47 times that of natural mortar, showing better constructability. Under static load, the loss of vertical mutation height and creep of recycled mortar printed specimens are significantly smaller. It is about 0.5 times that of natural mortar printed specimens, according to the apparent characteristics of recycled sand, the evolution mechanism of flow/thixotropy of recycled mortar during hydration is revealed. The deformation of 3D printed specimen under static load is analyzed from the aspects of material properties and 3D printing time structure gap, which provides theoretical support for the application of recycled mortar in 3D printing.
Key words:  3D printing    recycled mortar    early performance    rheology    strength evolution
出版日期:  2024-05-10      发布日期:  2024-05-13
ZTFLH:  TU528  
基金资助: “十三五”国家重点研发计划(2019YFC1907105);国家自然科学基金(51878546;52178251);陕西省杰出青年科学基金项目(2020JC-46);陕西省重点研发计划项目(2020SF-392);榆林市产学科技计划项目(CXY-2020-062);陕西省创新人才推进计划(2018KJXX-056)
通讯作者:  * 刘超,西安建筑科技大学土木工程学院、理学院教授,博士研究生导师。2006年南京工业大学土木工程专业学士毕业,2008 年西安建筑科技大学工程力学专业硕士毕业后留校工作至今,2012年西安建筑科技大学结构工程专业博士毕业。目前主要从事建筑3D打印智能建造、低碳环保型混凝土、再生建筑/工业材料及其结构性能、生物质智能混凝土等智能建造和大宗固废资源化领域研究。授权国家专利22项,其中发明专利15项,实用新型专利7项。在国内外期刊上发表学术论文70余篇,其中国际顶级SCI、ESI热点论文、ESI高被引论文,中文行业权威期刊论文40余篇,出版学术论著一部(Elsevier)。chaoliu@xauat.edu.cn   
引用本文:    
刘超, 蒙毅升, 武怡文, 刘化威. 3D打印再生砂浆早期流变性能及结构经时演化研究[J]. 材料导报, 2024, 38(9): 22100157-8.
LIU Chao, MENG Yisheng, WU Yiwen, LIU Huawei. Study on Early Rheological Properties and Structure Evolution of 3D Printed Recycled Mortar. Materials Reports, 2024, 38(9): 22100157-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100157  或          http://www.mater-rep.com/CN/Y2024/V38/I9/22100157
1 Bao Y Q Li H. China Civil Engineering Journal, 2019, 52(5), 1 (in Chinese).
鲍跃全, 李惠.土木工程学报. 2019, 52(5), 1.
2 Ketel S, Falzone G, Wang B, et al. Cement and Concrete Composites, 2019, 101,32.
3 Yang Q R, Zhao Z Z, Xiao J Z, et al. Journal of Building Materials, 2021, 24(2), 412(in Chinese).
杨钱荣,赵宗志,肖建庄,等.建筑材料学报, 2021, 24(2), 412.
4 Vallurupalli K, Farzadnia N, Khayat K H. Cement and Concrete Compo-sites, 2021, 118, 103952
5 Bos F P, Kruger P J, Lucas S S, et al. Cement and Concrete Composites, 2021, 120, 104024.
6 Marchon D, Kawashima S, Bessaies-Bey H, et al. Cement and Concrete Research, 2018, 112, 96.
7 Fatemeh H A, Farhad A. Construction and Building Materials, 2019, 218, 582.
8 Duan Z H, Hou S D, Xiao J Z, et al. Construction and Building Mate-rials, 2020, 237, 117622.
9 Ding T, Xiao J Z, Zou S, et al. Cement and Concrete Composites, 2020, 113, 103724
10 Mohan M K, Rahul A V, De S G, et al. Cement and Concrete Compo-sites, 2021, 122, 103855.
11 Ghafur H. Ahmed. Journal of Building Engineering, 2023, 66, 105863.
12 Dey D, Srinivas D, Panda B, et al. Journal of Cleaner Production, 2022,340, 130749.
13 Roussel N. Cement and Concrete Research, 2018, 112, 76.
14 Moeini M A, Hosseinpoor M, Yahia A. Construction and Building Mate-rials, 2020, 257, 127614.
15 Kruger J, Zeranka S, van Zijl G. Construction and Building Materials, 2019, 224, 372.
16 Suiker A S J, Wolfs R J M, Lucas S M, et al. Cement and Concrete Research, 2020, 135,106016.
17 Liu Y, Li M Y, Yan P Y. Journal of Silicate, 2019, 47 (5), 594(in Chinese).
刘宇,黎梦圆,阎培渝.硅酸盐学报, 2019, 47(5), 594.
18 Zhang Y, Zhang Y, She W, et al. Construction and Building Materials, 2019, 201, 278.
19 Mohan M K, Rahul A V, Van T K, et al. Cement and Concrete Research, 2021, 139, 106258.
20 Liu C, Wang Y Q, Liu H W, et al. Materials Reports, 2023,37(1), 84 (in Chinese).
刘超,王有强,刘化威,等.材料导报, 2023, 37(1), 84.
21 Zou S, Xiao J Z, Ding,et al. Construction and Building Materials. 2021, 273, 121699.
22 JGJ/T70-2009. Standard for test method of basic performance of building mortar, China Architecture & Building Press, China, 2009 (in Chinese).
JGJ/T70-2009. 建筑砂浆基本性能试验方法标准, 中国建筑工业出版社, 2009.
23 Roussel N. Cement and Concrete Research, 2006, 36(10), 1797.
24 Raphael C, Wilson R L d S, Thomas J A. Cement and Concrete Research, 2020, 138, 106256.
25 Chen Y N, Zhang Y M, Xie Y D, et al. Additive Manufacturing, 2022,59, 103137
26 Kaczanov. Basis of plasticity theory. People's Education Press, China, 1959, pp. 289 (in Chinese).
卡恰诺夫.塑性理论基础, 人民教育出版社, 1959, pp. 289.
27 Liu H W, Liu C, Bai G L, Wu Y W. Journal of Civil Engineering, 2022, 55(12), 54 (in Chinese).
刘化威,刘超,白国良,武怡文.土木工程学报, 2022, 55(12), 54.
[1] 元强, 钟福文, 姚灏, 左胜浩, 谢宗霖, 姜孟杰. 搅拌工艺对高掺量丁苯乳液改性硫铝酸盐水泥性能的影响[J]. 材料导报, 2024, 38(9): 22110286-7.
[2] 桂岩, 赵爽, 杨自春. 3D打印隔热材料研究进展[J]. 材料导报, 2024, 38(8): 22090104-11.
[3] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[4] 吴思远, 单忠德, 陈恳, 刘丰, 刘晓军, 严春晖. 3D打印连续纤维增强树脂T型梁的弯曲性能[J]. 材料导报, 2024, 38(7): 22090150-7.
[5] 刘雄飞, 侯冠宇, 蔡华崇, 李之建. 协同连续布筋增韧喷射3D打印混凝土的抗弯性能[J]. 材料导报, 2024, 38(1): 22090102-6.
[6] 郑家桢, 裴海华, 张贵才, 单景玲, 蒋平. 改性纳米硅颗粒强化高温泡沫的性能及机理研究[J]. 材料导报, 2023, 37(7): 21100066-5.
[7] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[8] 周振豪, 姜勇刚, 冯军宗, 李良军, 冯坚. 直写成型制备多孔陶瓷技术研究进展[J]. 材料导报, 2023, 37(4): 20120004-7.
[9] 张吉哲, 郭晨晨, 胡学亮, 何亮, 吕鑫, 樊超, 姚占勇. 富油沥青砂浆再生设计与性能恢复规律研究[J]. 材料导报, 2023, 37(24): 22100098-7.
[10] 蒋佳骏, 吴张永, 朱启晨. 水基Ni0.5Zn0.5Fe2O4-SiC二元混合磁流体的稳定性、流变性、热物性与低速润滑性[J]. 材料导报, 2023, 37(20): 22040257-8.
[11] 黄帅, 张文芹, 刘志超, 王发洲. 基于CO2驱动固结的镁渣基3D打印材料的制备与性能研究[J]. 材料导报, 2023, 37(19): 22050050-7.
[12] 董栋, 苏海军, 李翔, 赵迪, 樊光娆, 申仲琳, 刘园. 光固化3D打印磷酸钙基生物陶瓷支架的研究进展[J]. 材料导报, 2023, 37(18): 22010288-9.
[13] 周婧, 樊云光, 卢林, 段国林, 孙文彬. 直写成型氧化锆生物陶瓷的制备及性能研究[J]. 材料导报, 2023, 37(17): 22020100-6.
[14] 陈孟州, 刘顾, 汪刘应, 葛超群, 许可俊, 王伟超, 王龙. 超材料吸波体及其3D打印制造研究进展[J]. 材料导报, 2023, 37(16): 21100117-7.
[15] 徐卓越, 李辉, 张大旺, 孙雪梅, 赵柯飞, 王悦莹. 建筑3D打印用胶凝材料及其相关性能研究进展[J]. 材料导报, 2023, 37(12): 21080117-14.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed