Please wait a minute...
材料导报  2024, Vol. 38 Issue (9): 22100254-6    https://doi.org/10.11896/cldb.22100254
  无机非金属及其复合材料 |
不同吸水环境下碱渣固化淤泥毛细吸水和强度性质
何俊*, 罗时茹, 龙思昊, 朱元军
湖北工业大学土木建筑与环境学院,武汉 430068
Capillary Water Absorption and Strength of Soft Soil Solidified with Soda Residue Under Different Water Environments
HE Jun*, LUO Shiru, LONG Sihao, ZHU Yuanjun
School of Civil Engineering, Architectural and Environment, Hubei University of Technology, Wuhan 430068, China
下载:  全 文 ( PDF ) ( 4359KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 地下水位以上的固化淤泥中存在毛细吸水现象,可能会对固化淤泥的耐久性产生不利影响。以碱渣、矿渣和电石渣对淤泥进行固化处理,开展不同吸水环境下固化淤泥的毛细吸水、无侧限抗压强度、X射线衍射和核磁共振试验,研究毛细传输系数和强度的变化规律及其微观机理。研究表明,固化淤泥毛细管系数与吸水系数之比为2.3~3.2;固化淤泥的吸水系数和毛细管系数随碱渣掺量的增加先减后增,在碱渣掺量为25%(质量分数,下同)时最小,对应毛细孔体积也最小;随着水中含盐量增加,更多的钙矾石生成并发生氯化钠的迁移和聚集,毛细孔体积增多,孔径增大,毛细吸水能力增强,导致固化淤泥的毛细吸水系数和毛细管系数增大,无侧限抗压强度降低。在海水环境下毛细吸水使碱渣固化淤泥强度损失比水泥固化淤泥更严重。以碱渣等工业固体废弃物作为淤泥固化剂时,需考虑毛细吸水对固化淤泥耐久性的不利影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何俊
罗时茹
龙思昊
朱元军
关键词:  碱渣固化淤泥  毛细吸水  吸水环境  毛细水传输系数  无侧限抗压强度    
Abstract: Capillary water absorption occurs in solidified soft soil above the groundwater level, which may have an adverse impact on durability of solidified soil. The soft soil was solidified with soda residue (SR), ground granulated blast furnace slag and carbide slag. The capillary water absorption, unconfined compressive strength (UCS), X-ray diffraction and nuclear magnetic resonance tests of solidified soil under different water absorption environments were carried out to study the variation of capillary transport coefficient and strength and its microscopic mechanism. The results show that the ratio of capillary coefficient (κ) to capillary sorptivity (s) are in the range of 2.3 to 3.2. The s and κ of solidified soil decrease at first and then increase with the increase of SR content, and the minimum s and κ values and capillary pore volume occur at 25% SR content. With the increase of salt concentration, more ettringite is generated and sodium chloride migrates and aggregates. Accordingly, the volume of capillary pores and the capillary absorption capacity of solidified soil increase, which contributes to the increase of s and κ values and the decrease of UCS. The decrease in UCS at seawater environment for SR solidified soil is greater than that for cement solidified soil. It is necessary to pay attention to the adverse effect of capillary absorption on durability of soil solidified with industrial solid wastes such as SR.
Key words:  soil solidified with soda residue    capillary adsorption    water environment    capillary water transport coefficients    unconfined compressive strength
出版日期:  2024-05-10      发布日期:  2024-05-13
ZTFLH:  TU443  
基金资助: 国家自然科学基金 (41772332)
通讯作者:  * 何俊,湖北工业大学土木建筑与环境学院教授、博士研究生导师。2000年吉林大学岩土工程专业本科毕业,2003年吉林大学岩土工程专业硕士毕业,2006年河海大学岩土工程专业博士毕业后到湖北工业大学工作至今。目前主要从事环境岩土工程、固体废弃物资源化利用等方面的研究工作。发表论文30余篇,包括Construction and Building Materials、Waste Management、 Journal of Materials in Civil Engineering、Water Science and Engineering、《岩土力学》等。hjunas@163.com   
引用本文:    
何俊, 罗时茹, 龙思昊, 朱元军. 不同吸水环境下碱渣固化淤泥毛细吸水和强度性质[J]. 材料导报, 2024, 38(9): 22100254-6.
HE Jun, LUO Shiru, LONG Sihao, ZHU Yuanjun. Capillary Water Absorption and Strength of Soft Soil Solidified with Soda Residue Under Different Water Environments. Materials Reports, 2024, 38(9): 22100254-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100254  或          http://www.mater-rep.com/CN/Y2024/V38/I9/22100254
1 Wang L C. Journal of Hydraulic Engineering, 2009, 40(9), 1083(in Chinese).
王立成.水利学报, 2009, 40(9), 1083.
2 Dong J M, Xu H Z, Zhu D H, et al. Chinese Journal of Geotechnical Engineering, 2013, 35(7), 1316(in Chinese).
董金梅, 徐洪钟, 朱定华, 等.岩土工程学报, 2013, 35(7), 1316.
3 Mustafa Y C, Ahmet U K. Environmental Earth Science, 2016, 75, 307.
4 Peng L, Chen B. Construction and Building Materials, 2021, 303, 124557.
5 Zhang P, Zhao T J, Wittmann F H, et al. Journal of Hydraulic Enginee-ring, 2011, 42(1), 81(in Chinese).
张鹏, 赵铁军, Wittmann F H,等. 水利学报, 2011, 42(1), 81.
6 Spragg R P, Castro J, Li W, et al. Cement and Concrete Composites, 2011, 33, 535.
7 American Society for Testing and Material.Standard test method for wetting and drying test of solid wastes, ASTM Press, Philadelphia, 1988.
8 Jiang N J, Du Y J, Liu K. Applied Clay Science, 2018, 161, 70.
9 Ren K B, Wang B, Li X M, et al. Rock and Soil Mechanics, 2019, 40(3), 962(in Chinese).
任克彬, 王博, 李新明, 等. 岩土力学, 2019, 40(3), 962.
10 Cantero B, Bosque I F S, Matias A, et al. Cement and Concrete Compo-sites, 2020, 107, 103486.
11 Fu Q, Xie Y J, Long G C, et al. Journal of Building Materials, 2015, 18(1), 17(in Chinese).
傅强, 谢友均, 龙广成, 等. 建筑材料学报, 2015, 18(1), 17.
12 Zhang W, Yin C L, Huang Z Y. Journal of Building Materials, 2019, 22(2), 227(in Chinese).
张伟, 殷成龙, 黄志义. 建筑材料学报, 2019, 22(2), 227.
13 Liu J X, Wu X B, Zhang M L, et al. Journal of Building Materials, 2018, 21(6), 1012(in Chinese).
刘俊霞, 吴晓博, 张茂亮, 等.建筑材料学报, 2018, 21(6), 1012.
14 Wang S, Liang J G, Zeng X J. Engineering Journal of Wuhan University, 2015, 48(3), 383(in Chinese).
王松, 梁建国, 曾小婧. 武汉大学学报(工学版), 2015, 48(3), 383.
15 Tan Y Z, Kong L W, Guo A G, et al. Rock and Soil Mechanics, 2010, 31(7), 2289(in Chinese).
谭云志, 孔令伟, 郭爱国, 等. 岩土力学, 2010, 31(7), 2289.
16 Wang F C, Zhao H L, Ma J, et al.Soils and Foundations, 2021, 61, 734.
17 Lv Q F, Chang C R, Ma B, et al.Chinese Journal of Rock Mechanics and Engineering, 2018, 37(2), 4290.
18 He J, Shi X K, Li Z X, et al. Construction and Building Materials, 2020, 242, 118.
19 Yi Y L, Gu L Y, Liu S Y, et al. Canadian Geotechnical Journal, 2015, 52(5), 656.
20 GB/T 50123—2019土工试验方法标准, 中国计划出版社, 2019.
21 Tao G L, Wu X K, Yang X H, et al.Journal of Engineering Geology, 2018, 26(5), 1243(in Chinese).
陶高梁, 吴小康, 杨秀华, 等.工程地质学报, 2018, 26(5), 1243.
22 ASTM.D4609 Standard Guide for Evaluating Effectiveness of Chemicals for Soil Stabilization. United States, ASTM 2008.
23 Ubbriaco P, Calabrese D. Journal of Thermal Analysis and Calorimetry, 2000, 61(2), 615.
[1] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[2] 苏丽, 牛荻涛, 黄大观, 张云升, 乔宏霞. 增强珊瑚骨料混凝土毛细吸水性能与预测模型[J]. 材料导报, 2023, 37(15): 22010023-8.
[3] 王晓娇, 戚承志, 周理安, 李太行, 陈昊祥, 王泽帆, 马啸宇, 封焱杰, 罗伊. 掺再生微粉的城墙内芯土渗透性和强度研究[J]. 材料导报, 2022, 36(Z1): 21100220-6.
[4] 栗培龙, 裴仪, 胡晋川, 胡伟. 电石渣稳定土抗压强度影响因素及预估模型研究[J]. 材料导报, 2021, 35(22): 22092-22097.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed