Please wait a minute...
材料导报  2024, Vol. 38 Issue (9): 22100160-13    https://doi.org/10.11896/cldb.22100160
  无机非金属及其复合材料 |
直拉法单晶硅生长原理、工艺及展望
王正省1, 任永生1,2,*, 马文会1,*, 吕国强1, 曾毅1, 詹曙3, 陈辉2, 王哲4
1 昆明理工大学冶金与能源工程学院,昆明 650093
2 东京大学材料工程学院,东京 113-8656
3 合肥工业大学计算机与信息学院,合肥 230601
4 北京科技大学钢铁冶金新技术国家重点实验室,北京 100083
Principle, Process and Prospect of Monocrystalline Silicon Growth with Czochralski Method
WANG Zhengxing1, REN Yongsheng1,2,*, MA Wenhui1,*, LYU Guoqiang1, ZENG Yi1, ZHAN Shu3, CHEN Hui2, WANG Zhe4
1 Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
2 Department of Materials Engineering, The University of Tokyo, Tokyo 113-8656, Japan
3 School of Computer and Information, Hefei University of Technology, Hefei 230601, China
4 State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 7151KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳达峰、碳中和理念提出后,太阳能作为一种可再生绿色能源备受关注。单晶硅作为主要的光伏材料,其质量决定着太阳能电池效率的高低,为了降低成本和提高产能,人们对单晶硅提出越来越高的要求。直拉法(CZ法)是单晶硅的主要制备方法,其生产效率高,可实现自动化,直拉单晶硅市场占比超过90%,目前正朝着大尺寸、N型、薄片化、低氧低碳的方向发展。然而随着晶棒尺寸增大,热场变化更加复杂,现有CZ工艺难以满足市场需求。未来降低度电成本仍是晶硅光伏发展的驱动力,应通过技术革新、产业标准化、成本控制等手段推动光伏产业发展。本文介绍了CZ法生长单晶硅的基本原理和生长工艺,分别对缺陷控制、热场优化、氧含量控制等进行了分析,在总结工艺现状和单晶生长特点的基础上对直拉法生长单晶硅的发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王正省
任永生
马文会
吕国强
曾毅
詹曙
陈辉
王哲
关键词:  直拉法  单晶硅  大尺寸  薄片化  热场  太阳能    
Abstract: With the introduction of the concept of peak carbon dioxide emission and carbon neutrality, solar energy as a renewable green energy has attracted much attention. Monocrystalline silicon is main photovoltaic material, and its quality determines the efficiency of solar cells. High-quality monocrystal silicon is required to reduce costs and increase production capacity. Czochralski (CZ) method is main preparation method for monocrystalline silicon, with high production efficiency and automation. The market share of CZ-Si exceeds 90%. At present, it is developing toward large size, N-type, flake, low oxygen, and low carbon. However, as the size of crystal rod increases, the thermal field changes become more complex, and the existing CZ process is difficult to meet the market demand. In the future, reducing the cost of kilowatt-hour electricity is still the driving force for the development of crystalline silicon photovoltaic, and the development of photovoltaic should be promoted through technological innovation, industrial standardization, cost control, and other means. In this paper, the basic principle and growth process of monocrystalline silicon using CZ are first summarized. Defect control, thermal field optimization, and oxygen content control are analyzed. Finally, the process and future prospects of developing monocrystalline silicon using CZ are presented.
Key words:  Czochralski method    monocrystalline silicon    large size    flake    thermal field    solar energy
出版日期:  2024-05-10      发布日期:  2024-05-13
ZTFLH:  O782  
基金资助: 云南省科技厅重大研发计划基金(202103AA080010;202102AB080016);国家自然科学基金青年基金(52104303);云南省科技厅-昆明理工大学创建“双一流”联合基金面上项目(202201BE070001-045);国家自然科学基金云南联合基金项目(U1702251);北京科技大学钢铁冶金新技术国家重点实验室基金项目(KK21-07)
通讯作者:  * 任永生,日本东京大学博士,昆明理工大学冶金与能源工程学院副教授、硕士研究生导师。博士毕业(国家公派留学,文部省奖学金)后曾留校东京大学担任教职员。2020年归国到昆明理工大学工作,主要从事:(1)硅冶金与硅材料;(2)铝合金熔体净化;(3)高熵合金制备及新应用等研究,发表学术期刊论文40余篇,包括Separation and Purification Technology、ACS Sustainable Chemistry & Engineering、Crystal Growth & Design、Vacuum、Green Chemistry等。申请专利10余项,授权专利5项。ryssdy@126.com
马文会,云南大学党委副书记、常务副校长,昆明理工大学教授、博士研究生导师,国家高层次人才特聘教授、国家“万人计划”科技创新领军人才,云南省硅冶金与材料技术研究创新团队负责人。长期从事有色金属真空冶金、工业硅生产、多晶硅制备新技术及新能源材料制备等领域的研究。先后主持和参与国家自然科学基金、国家科技支撑计划、国际合作项目以及企业委托项目等50余项。获国家技术发明二等奖1项,省部级科技奖一等奖5项、二等奖1项;以第一作者或通信作者发表高水平SCI论文360余篇,申请国家发明专利100余项,获授权72项,出版学术专著或教材4部。mawenhui@ynu.edu.cn   
作者简介:  王正省,2021年6月毕业于昆明理工大学,获工学学士学位。现为昆明理工大学冶金与能源工程学院在读硕士研究生,在马文会教授、任永生副教授的指导下进行直拉法生长单晶硅数值模拟与热场优化的研究,授权专利3项,在International Journal of Heat and Mass Transfer、Journal of Alloys and Compounds、Vacuum等期刊上发表SCI论文4篇。
引用本文:    
王正省, 任永生, 马文会, 吕国强, 曾毅, 詹曙, 陈辉, 王哲. 直拉法单晶硅生长原理、工艺及展望[J]. 材料导报, 2024, 38(9): 22100160-13.
WANG Zhengxing, REN Yongsheng, MA Wenhui, LYU Guoqiang, ZENG Yi, ZHAN Shu, CHEN Hui, WANG Zhe. Principle, Process and Prospect of Monocrystalline Silicon Growth with Czochralski Method. Materials Reports, 2024, 38(9): 22100160-13.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22100160  或          https://www.mater-rep.com/CN/Y2024/V38/I9/22100160
1 Ren Y S, Chen H, Zeng Y, et al. Vacuum, 2022, 201, 111081.
2 Wang J, Lin Y J, Wu C J, et al. Energy Storage Science and Technology, 2022, 11(2), 731 (in Chinese).
王捷, 林余杰, 吴成坚, 等.储能科学与技术, 2022, 11(2), 731.
3 Li W. Jiangsu Science & Technology Information, 2018, 35(24), 54 (in Chinese).
李伟.江苏科技信息, 2018, 35(24), 54.
4 Tsai C W, Liu T K, Hsueh P W. Energies, 2020, 13(12), 3060.
5 Zheng C, Kammen D M. Energy Policy, 2014, 67, 159.
6 Tyagi V V, Rahim N A A, Rahim N A, et al. Renewable and Sustainable Energy Reviews, 2013, 20, 443.
7 Jiang H. Solar Energy, 2022, 333(1), 5 (in Chinese).
江华. 太阳能, 2022, 333(1), 5.
8 Li Z G. Engineering, DOI:10.1016/j.eng.2022.07.008.
9 Wang W J. Solar Energy, 2020, 318(10), 5 (in Chinese).
王文静. 太阳能, 2020, 318(10), 5.
10 Ur Rehman A, Lee S H. The Scientific World Journal, 2013, 2013, 470347.
11 Chen J F, Zhao S S, Gao T, et al. Materials Reports, 2019, 33(1), 110 (in Chinese).
陈俊帆, 赵生盛, 高天, 等.材料导报, 2019, 33(1), 110.
12 Steinhauser B, Polzin J I, Feldmann F, et al. Solar RRL, 2018, 2(7), 1800068.
13 Richter A, Benick J, Feldmann F, et al. Solar Energy Materials and Solar Cells, 2017, 173, 96.
14 Adachi D, Hernández J, Yamamoto K. Applied Physics Letters, 2015, 107(23), 233506.
15 Taguchi M, Yano A, Tohoda S, et al. IEEE Journal of Photovoltaics, 2014, 4(1), 96.
16 Wei K F, Liu D W, Ni Y F, et al. Journal of Synthetic Crystals, 2021, 50(1), 66 (in Chinese).
魏凯峰, 刘大伟, 倪玉凤, 等. 人工晶体学报, 2021, 50(1), 66.
17 Richter A, Hermle M, Glunz S. IEEE Journal of Photovoltaics, 2013, 3(4), 1184.
18 Long W, Yin S, Peng F G,et al. Solar Energy Materials and Solar Cells, 2021, 231, 111291.
19 Qu X L, He Y C, Qu M H, et al. Nature Energy, 2021, 6(2), 194.
20 Yoshikawa K, Kawasaki H, Yoshida W, et al. Nature Energy, 2017, 2(5), 1.
22100160-1221 Yoshikawa K, Yoshida W, Irie T, et al. Solar Energy Materials and Solar Cells, 2017, 173, 37.
22 Wang X S. In: 15th China SoG Silicon and PV Power Conference, Shanghai, 2019(in Chinese).
王栩生. 第十五届中国太阳能级硅及光伏发电研讨会, 上海, 2019.
23 Chen H B, Yan Z R, Ku L M, et al. Material Sciences, 2020, 10(4), 234 (in Chinese).
陈海滨, 闫志瑞, 库黎明, 等. 材料科学, 2020, 10(4), 234.
24 Han X F, Lin X, Nakano S, et al. Crystal Research and Technology, 2018, 53(5), 1700246.
25 Wang Y J. The research and preparation on FZ single crystal silicon with large diameter.Master's Thesis, Hebei University of Technology, China, 2015 (in Chinese).
王彦君. 大直径区熔硅单晶的研究与制备. 硕士学位论文, 河北工业大学, 2015.
26 Czochralski J. Zeitschrift für Physikalische Chemie, 1918, 92(1), 219.
27 Teal G K, Buehler E. Proceedings of the IRE, 1952, 40(8), 906.
28 Liu D. Growth process modeling and control of Czochralski silicon single crystal, Science Press, China, 2015, pp. 48 (in Chinese).
刘丁. 直拉硅单晶生长过程建模与控制, 科学出版社, 2015, pp. 48.
29 Yu Z L. Light Metals, 2006(2), 52.
30 Zeng Y, Ren Y S, Ma W H, et al. Progress in Chemistry, 2022, 34(4), 926 (in Chinese).
曾毅, 任永生, 马文会, 等. 化学进展, 2022, 34(4), 926.
31 Cao J W. Research on the key technology of CZ silicon crystal growth furnace.Master's Thesis, Zhejiang University, China, 2010 (in Chinese).
曹建伟. 直拉式单晶硅生长炉的关键技术研究. 硕士学位论文, 浙江大学, 2010.
32 Tilli M, Motooka T, Airaksinen V, et al. Handbook of Silicon Based MEMS Materials and Technologies. Elsevier, UK, 2015, pp. 18.
33 Satunkin G. Journal of Crystal Growth, 1995, 154(1-2), 172.
34 Taishi T, Hoshikawa K, Ohno Y, et al. Physica B: Condensed Matter, 2009, 404(23-24), 4612.
35 Taishi T, Huang X M, Wang T F, et al. Journal of Crystal Growth, 2002, 241(3), 277.
36 Dash W. Journal of Applied Physics, 1959, 30(4), 459.
37 Dash W. Journal of Applied Physics, 1960, 31(12), 2275.
38 Dash W. Journal of Applied Physics, 1958, 29(4), 736.
39 Kim K, Smetana P. Journal of Crystal Growth, 1990, 100(3), 527.
40 Lida T, Machida N, Takase N, et al. Journal of Crystal Growth, 2001, 229(1), 31.
41 Su W J, Li J L, Yang W. Journal of the Chinese Ceramic Society, 2021, 49(4), 723 (in Chinese).
苏文佳, 李九龙, 杨伟. 硅酸盐学报, 2021, 49(4), 723.
42 Hall R. Journal of Physical Chemistry A, 1953, 57(8), 836.
43 Rudolph P. Handbook of crystal growth: bulk crystal growth: basic techniques, Amsterdam: Elsevier, Netherlands, 2015, pp. 45.
44 Müller G, Métois J, Rudolph P. Crystal growth: from fundamentals to technology, Elsevier. Netherlands, 2004, pp. 27.
45 Voronkov V. Journal of Crystal Growth, 1981, 52(1), 311.
46 Kranert C, Raming G, Miller A, et al. Journal of Crystal Growth, 2021, 568, 126174.
47 Zhao H D, Zhai X T, Tian Z G, et al. Journal of Synthetic Crystals, 2020, 49(4), 607 (in Chinese).
赵华东, 翟晓彤, 田增国, 等. 人工晶体学报, 2020, 49(4), 607.
48 Reshef D, Reshef Y, Finucane H, et al. Science, 2011, 334(6062), 1518.
49 Zhang J, Liu D, Zhao Y, et al. Journal of Synthetic Crystals, 2013, 42(1), 58 (in Chinese).
张晶, 刘丁, 赵跃, 等. 人工晶体学报, 2013, 42(1), 58.
50 Pei Z J, Ji X F, Liu F. Journal of Semiconductors, 1998(3), 20(in Chinese).
裴志军, 纪秀峰, 刘峰.半导体杂志, 1998(3), 20.
51 Dong J M, Zhang B, Liu J, et al. Materials Reports, 2013, 27(S1), 157 (in Chinese).
董建明, 张波, 刘进, 等. 材料导报, 2013, 27(S1), 157.
52 Bukhari H, Hovd M, Winkler J. IFAC-PapersOnLine, 2019, 52(14), 126.
53 Hurle D. Journal of Crystal Growth, 1977, 42, 473.
54 Nguyen T H T, Chen J C, Lo S C. Journal of Crystal Growth, 2022, 583, 126546.
55 Zhao W, Li J, Liu L. Crystals, 2021, 11(3), 264.
56 Costa E C, Xavier F A, Knoblauch R. Solar Energy, 2020, 207, 640.
57 Chen K X, Liu Y Y, Wang X S, et al. Solar Energy Materials & Solar Cells, 2015, 133, 148.
58 Xiao H P, Wang H R, Yu N. Journal of Materials Processing Tech, 2019, 273, 116267
59 Liu S, Huang K, Zhu H. Separation and Purification Technology, 2017, 172, 113.
60 Choi S, Jang B, Kim J, et al. Solar Energy, 2016, 125, 198.
61 Buchwald R, Würzner S, Möller H, et al. Physica Status Solidi A, 2015, 212(1), 25.
62 Kalaeva V V, Evstratova I Y, Makarov Y N. Journal of Crystal Growth, 2003, 249(1-2), 87.
63 Ding J L, Liu L J. International Journal of Heat and Mass Transfer, 2019, 142, 118463.
64 Lipchin A, Brown R A. Journal of Crystal Growth, 2000, 216(1-4), 192.
65 Ding J L, Li Y Q, Liu L J. International Journal of Thermal Sciences, 2021, 170, 107137.
66 Chen J C, Guo P C, Chang C H, et al. Journal of Crystal Growth, 2014, 401(1), 888.
67 Liu X, Han X F, Nakano S, et al. Journal of Crystal Growth, 2018, 483, 241.
68 Lin G W, Wang S, Zhang X Y, et al. Journal of Synthetic Crystals, 2021, 50(8), 1541 (in Chinese).
林光伟, 王珊, 张西亚, 等. 人工晶体学报, 2021, 50(8), 1541.
69 Song D W, Lee S H, Mun Y H, et al. Journal of Crystal Growth, 2011, 325(1), 27.
70 Takano K, Shiraishi Y, Matsubara J, et al. Journal of Crystal Growth, 2001, 229(1), 26.
71 Teng Y Y, Chen J C, Lu C W, et al. International Journal of Photoenergy, 2012, 2012, 395235.
72 Chen J C, Teng Y Y, Wun W T, et al. Journal of Crystal Growth, 2011, 318(1), 318.
73 Huang L Y, Lee P C, Hsieh C K, et al. Journal of Crystal Growth, 2004, 261(4), 433.
74 Kamiyama E, Vanhellemont J, Sueoka K, et al. Applied Physics Letters, 2013, 102(8), 082108.
75 Mühe A, Müller G. Materials Science in Semiconductor Processing, 2000, 3(3), 185.
76 Coletti G. Progress in Photovoltaics: Research and Applications, 2013, 21(5), 1163.
77 Vorob'ev A, Sid'ko A P, Kalaev V V. Journal of Crystal Growth, 2014, 386, 226.
78 Trempa M, Reimann C, Friedrich J, et al. Journal of Crystal Growth, 2010, 312(9), 1517.
79 Zulehner W. Journal of Crystal Growth, 1983, 65(1-3), 189.
80 Nozaki T, Yatsurugi Y, Akiyama N, et al. Journal of Radioanalytical Chemistry, 1974, 19, 109.
81 Kishino S, Kanamori M, Yoshihiro N, et al. Journal of Applied Physics, 1979, 50(12), 8240.
82 Kishino S, Matsushita Y, Kanamori M. Applied Physics Letters, 1979, 35(3), 213.
83 Nagai Y, Nakagawa S, Kashima K. Journal of Crystal Growth, 2014, 401, 737.
84 Zhang J, Liu D, Zhao Y, et.al. Journal of Mechanical Engineering, 2014, 27(3), 504.
85 Adylov G T, Faiziev S A, Paizullakhanov M S, et al. Technical Physics Letters, 2003, 29(3), 221.
86 Sha M, Utkin Y A, Tushavina O V, et al. Periódico Tchê Química, 2020, 17(35), 988.
87 Zmij V I, Rudenkyi S G, Shepelev A G. Materials Sciences and Applications, 2015, 6(10), 879.
88 Sun J. Research on batch process modeling and diameter control of Czochralski silicon single crystal.Master's Thesis, Xian University of Techno-logy, China, 2021 (in Chinese).
孙杰. 直拉硅单晶批次过程建模与直径控制研究. 硕士学位论文, 西安理工大学, 2021.
89 Huang X M, Taishi T, Wang T F, et al. Journal of Crystal Growth, 2001, 229(1), 6.
90 Voronkov V. Journal of Crystal Growth, 1982, 59(3), 625.
91 Ammon W, Dornberger E, Oelkrug H, et al. Journal of Crystal Growth, 1995, 151(3-4), 273.
92 Sim B C, Jung Y H, Lee J E, et al. Journal of Crystal Growth, 2007, 299(1), 152.
93 Noghabi O A, M'hamdi M, Jomâa M. Journal of Crystal Growth, 2011, 318(1), 173.
94 Kirpo M. Journal of Crystal Growth, 2013, 371, 60.
95 Gao Y, Tu H L, Zhou Q G, et al. Rare Metals, 2007, 26(6), 607.
96 Nguyen T H T, Chen J C, Hu C, et al. Journal of Crystal Growth, 2019, 507(1), 50.
97 Li T, Zhao L, Lv G Q, et al. Silicon, 2022, 15(2), 1049.
98 Zeng Z D, Ma X Y, Chen J C, et al. Journal of Crystal Growth, 2010, 312(2), 169.
99 Kakimoto K, Liu X, Nakano S. Materials, 2022, 15(5), 1843.
100 Zhang X P, Gao C, Fu M S, et al. Journal of Applied Physics, 2013, 113(16), 163510.
101 Gao B, Juel M, Mhamdi M. Journal of Crystal Growth, 2016,453(1), 173.
102 Torbjorn C, Thomas B, August F. Journal of the Electrochemical Society, 1982, 129(1), 189.
103 Hoshikawa K, Huang X M. Materials Science and Engineering B, 2000, 72(2-3), 73.
104 Wang K, Koch H, Trempa M, et.al. Journal of Crystal Growth, 2021, 576, 126384.
105 Abe T, Takahashi T. Journal of Crystal Growth, 2011,334, 16.
106 Taguchi A, Kageshima H, Wada K. Journal of Applied Physics, 2005, 97(5), 053514.
[1] 党奔, 陈志俊. 木基光热转换功能材料的应用研究进展[J]. 材料导报, 2025, 39(1): 24100143-13.
[2] 赵佳薇, 陈浩霖, 罗倪, 刘振国. 卷对卷技术制备钙钛矿太阳能电池的研究进展[J]. 材料导报, 2025, 39(1): 24030057-17.
[3] 郑惠文, 金宏璋, 徐炎, 闫磊, 王行柱. 不同取代基对联苯二酰亚胺基空穴传输材料光电性能的影响[J]. 材料导报, 2024, 38(8): 22120082-8.
[4] 杜一, 顾邦凯, 陈曦, 李夏冰, 卢豪. 埋底界面修饰对钙钛矿太阳能电池的影响[J]. 材料导报, 2024, 38(7): 22080111-10.
[5] 杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
[6] 黎涛, 孟威明, 王丁丁, 卫春祥, 鲁红典. 多层结构聚丙烯酰胺水凝胶太阳能蒸发器的制备及性能[J]. 材料导报, 2024, 38(7): 22080085-5.
[7] 周翔, 李太, 黄振玲, 赵亮, 康家铭, 李绍元, 任永生, 马文会, 吕国强. 大尺寸直拉法单晶硅生长过程中晶体缺陷的研究进展[J]. 材料导报, 2024, 38(24): 23100030-9.
[8] 赵登婕, 李康宁, 胡李纳, 闫彤, 杨艳坤, 郝阳, 张晨曦, 郝玉英. 氧化锡电子传输层在正置钙钛矿太阳能电池中的研究进展[J]. 材料导报, 2024, 38(21): 23040102-11.
[9] 孙启萌, 孙淼, 祁艳菲, 金国庆, 周兴海, 吕丽华, 魏春艳, 高原. 三维光热蒸发器结构设计理念研究进展[J]. 材料导报, 2024, 38(14): 23030100-9.
[10] 李雪, 周明宇, 韩朋, 戚桂村, 高达利, 陶胜洋, 王玉超. 高效太阳能驱动海水淡化的最新研究进展[J]. 材料导报, 2024, 38(13): 22110120-16.
[11] 何敬敬, 王旭, 牛强. 钙钛矿量子点在光伏电池中的应用进展[J]. 材料导报, 2024, 38(10): 22110228-13.
[12] 王耀武, 王彬彬. 有机电子传输材料在反式钙钛矿太阳能电池中的研究现状[J]. 材料导报, 2024, 38(10): 22100210-11.
[13] 许兵, 姚兴洁, 刘佳, 张旭, 杨晓彤, 郭培勋, 张新玉. 面向太阳能界面蒸发的纳米光热材料与系统设计研究[J]. 材料导报, 2023, 37(S1): 23030028-8.
[14] 夏鹏, 傅萍, 黄金华, 李佳, 宋伟杰. 硅异质结太阳能电池用透明导电氧化物薄膜的研究现状及发展趋势[J]. 材料导报, 2023, 37(9): 22090082-9.
[15] 周文彩, 王伟, 刘晓鹏, 齐帅, 于浩, 曾红杰, 王川申, 魏晓俊. 透明太阳能电池的研究进展[J]. 材料导报, 2023, 37(8): 21060214-8.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed