Please wait a minute...
材料导报  2024, Vol. 38 Issue (9): 22110004-7    https://doi.org/10.11896/cldb.22110004
  无机非金属及其复合材料 |
环栅晶体管制备中SiGe选择性刻蚀技术综述
刘恩序1,2, 李俊杰1,2,*, 刘阳1, 杨超然1,2, 周娜1,2, 李俊峰1,2, 罗军1,2, 王文武1,2
1 中国科学院微电子研究所,北京 100029
2 中国科学院大学集成电路学院,北京 100049
An Overview of SiGe Selective Etching Technology Used for the Preparation of Gate-All-Around Transistor
LIU Enxu1,2, LI Junjie1,2,*, LIU Yang1, YANG Chaoran1,2, ZHOU Na1,2, LI Junfeng1,2, LUO Jun1,2, WANG Wenwu1,2
1 Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
2 School of Integrated Circuits, University of the Chinese Academy of Sciences, Beijing 100049, China
下载:  全 文 ( PDF ) ( 4684KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 环栅(Gate-all-around,GAA)晶体管是3 nm以下节点替代现有鳍式晶体管(FinFET)最有竞争力的器件结构,能有效改善器件尺寸不断微缩带来的短沟道效应。与FinFET相比,GAA器件制备的工艺流程中内侧墙制备和沟道释放是新引入的工艺模块,均需要SiGe选择性刻蚀技术。工艺要求SiGe作为牺牲层被选择性刻蚀去除,且尽可能减少对Si沟道的损伤。本文对环栅晶体管制备工艺中所需的SiGe选择性刻蚀技术进行了综述,主要分析了器件结构的发展趋势及SiGe选择性刻蚀的应用,并分类综述了常规SiGe选择性刻蚀方法以及新型选择性刻蚀技术的发展历程,分析了各种技术的优点和不足。最后对SiGe选择性刻蚀技术面临的挑战进行了分析,并对其未来可能的发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘恩序
李俊杰
刘阳
杨超然
周娜
李俊峰
罗军
王文武
关键词:  锗硅  选择性刻蚀  环栅  内侧墙  沟道释放  纳米线  纳米片    
Abstract: Gate-all-around (GAA) transistors are the most competitive device structure to replace existing fin field effect transistors(FinFET) below the sub-3 nm node, effectively improve the short-channel effect caused by the continuous shrinking of device size along Moore's Law. In the process flow of GAA device preparation, inner spacer preparation and channel release are newly introduced process modules relative to FinFET, and both require SiGe selective etching technology. SiGe is required to be removed as a sacrificial layer by selective etching with as little damage as possible to the Si channel. This paper presents a review of the SiGe selective etching techniques required in the gate-all-around (GAA) transistor fabrication process. Firstly, we analyze the development trend of device structure and the application of SiGe selective etching. Secondly, the development of conventional SiGe selective etching methods and new selective etching techniques are categorized and reviewed. After that the advantages and shortcomings of each technique are summarized. Finally, this study analyzes the challenges faced by SiGe selective etching technology, and prospects the possible future development trends.
Key words:  SiGe    selective etching    gate-all-around    inner spacer    channel release    nanosheet    nanowire
出版日期:  2024-05-10      发布日期:  2024-05-13
ZTFLH:  TN305.7  
基金资助: 中国科学院先导A项目(XDA0330300);中国科学院支撑技术人才项目(E2YR01X001)
通讯作者:  * 李俊杰,中国科学院微电子研究所先导工艺研发中心高级工程师、硕士研究生导师。2004年武汉理工大学材料科学专业本科毕业,2007年北京航空航天大学信息功能材料专业毕业后在北方华创工作历任资深刻蚀工艺工程师及产品经理,2013年到中国科学院微电子研究先导工艺研发中心工作,2021年获得中国科学院大学微电子与固体电子学博士学位,入选中国科学院人才项目。主要从事先导刻蚀工艺及纳米器件研究,申请发明专利250余项,发表论文90余篇。lijunjie@ime.ac.cn   
作者简介:  刘恩序,2021年6月于吉林大学获得理学学士学位。现为中国科学院大学微电子研究所硕士研究生,在王文武研究员和李俊杰高级工程师的指导下进行研究。目前主要从事GAA器件的工艺研究。
引用本文:    
刘恩序, 李俊杰, 刘阳, 杨超然, 周娜, 李俊峰, 罗军, 王文武. 环栅晶体管制备中SiGe选择性刻蚀技术综述[J]. 材料导报, 2024, 38(9): 22110004-7.
LIU Enxu, LI Junjie, LIU Yang, YANG Chaoran, ZHOU Na, LI Junfeng, LUO Jun, WANG Wenwu. An Overview of SiGe Selective Etching Technology Used for the Preparation of Gate-All-Around Transistor. Materials Reports, 2024, 38(9): 22110004-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22110004  或          https://www.mater-rep.com/CN/Y2024/V38/I9/22110004
1 Moore G E. Proceedings of the IEEE, 1998, 86(1), 82.
2 Colinge J P. FinFETs and other multi-gate transistors,Springer,USA, 2008,pp.14.
3 Mertens H, Ritzenthaler R, Chasin A, et al.In:2016 IEEE International Electron Devices Meeting (IEDM). IEEE, 2016, pp.19.7. 1.
4 Kim S, Kim M, Ryu D, et al. IEEE Transactions on Electron Devices, 2020, 67(6), 2648.
5 Wostyn K, Kenis K, Mertens H, et al.In:Solid State Phenomena. Trans Tech Publications Ltd., 2018, pp. 126.
6 Nagy D, Indalecio G, Garcia-Loureiro A J, et al. IEEE Journal of the Electron Devices Society, 2018, 6,332.
7 Mohapatra E, Dash T P, Jena J, et al. Physica Scripta, 2020, 95(6), 065808.
8 Moon D I, Choi S J, Duarte J P, et al. IEEE Transactions on Electron Devices, 2013, 60(4), 1355.
9 Zhang Q, Yin H, Meng L, et al. IEEE Electron Device Letters, 2018, 39(4), 464.
10 Durfee C, Kal S, Pancharatnam S, et al. ECS Transactions, 2021, 104(4), 217.
11 Benjamin Colombeau.In:2021 IEEE International Electron Devies Metting. U.S. 2021,pp.1.
12 Li J, Li Y, Zhou N, et al. Nanomaterials, 2020, 10(4), 793.
13 Pelosi M. From finFET to nanosheet Si-SiGe GAAFET: fabrication process simulation and analysis. Master's Thesis, Politecnico Di Torino, Italy,2021.
14 Li J, Wang W, Li Y, et al. Journal of Materials Science: Materials in Electronics, 2020, 31(1), 134.
15 Mertens H, Ritzenthaler R, Hikavyy A, et al.In: 2016 IEEE Symposium on VLSI technology. IEEE, 2016,pp.1.
16 Bao R, Watanabe K, Zhang J, et al.In:2019 IEEE International Electron Devices Meeting (IEDM). IEEE, 2019,pp.11.2. 1.
17 Johnson F S, Miles D S, Grider D T, et al. Journal of Electronic Mate-rials, 1992, 21(8), 805.
18 Stoffel M, Malachias A, Merdzhanova T, et al. Semiconductor Science and Technology, 2008, 23(8), 085021.
19 Krist A H, Godbey D J, Green N P. Applied Physics Letters, 1991, 58(17), 1899.
20 Kato J, Oka H, Kanemoto K, et al. ECS Transactions, 2007, 6(8), 245.
21 Xue Zhongying, Wei Xing, Liu Linjie, et al. Science China Technological Sciences, 2011, 54(10),2802.
22 Holländer B, Buca D, Mantl S, et al. Journal of The Electrochemical Society, 2010, 157(6), H643.
23 Baraissov Z, Pacco A, Koneti S, et al. ACS Applied Materials & Interfaces, 2019, 11(40), 36839.
24 Zhang Q, Gu J, Xu R, et al. Nanomaterials, 2021, 11(3), 646.
25 Kil Y H, Yang J H, Kang S, et al. JSTS:Journal of Semiconductor Technology and Science, 2013, 13(6), 668.
26 Komori K, Rip J, Yoshida Y, et al.In:Solid State Phenomena. Trans Tech Publications Ltd., 2018, pp.107.
27 Zhao Y, Iwase T, Satake M, et al.In:2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM). IEEE, 2021,pp.1.
28 Xuan G, Adam T N, Lv P C, et al. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2008, 26(3), 385.
29 Zhang Y, Oehrlein G S, de Frésart E, et al. Journal of Applied physics, 1992, 71(4), 1936.
30 Oehrlein G S, Kroesen G M W, De Frésart E, et al. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1991, 9(3), 768.
31 Kumar A, Lee W H, Wang Y L. IEEE Transactions on Semiconductor Manufacturing, 2021, 34(2), 177.
32 Barnola S, Vizioz C, Vulliet N, et al. ECS Transactions, 2008, 16(10), 923.
33 Chang S J, Juang Y Z, Nayak D K, et al. Materials Chemistry and Phy-sics, 1999, 60(1), 22.
34 Borel S, Arvet C, Bilde J, et al. Microelectronic Engineering, 2004, 73, 301.
35 Pargon E, Petit-Etienne C, Youssef L, et al. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2019, 37(4), 040601.
36 Kuijer T J M, Giling L J, Bloem J. Journal of Crystal Growth, 1974, 22(1), 29.
37 Hartmann J M, Destefanis V, Rabillé G, et al. Semiconductor Science and Technology, 2010, 25(10), 105009.
38 Bogumilowicz Y, Hartmann J M, Truche R, et al. Semiconductor Science and Technology, 2004, 20(2), 127.
39 Loubet N, Kormann T, Chabanne G, et al. Thin Solid Films, 2008, 517(1), 93.
40 Yamamoto Y, Köpke K, Tillack B. Thin Solid Films, 2008, 517(1), 90.
41 Yamamoto Y, Köpke K, Kurps R, et al. Applied Surface Science, 2008, 254(19), 6037.
42 Hartmann J M, Destefanis V, Rabillé G, et al. Semiconductor Science and Technology, 2010, 25(10), 105009.
43 Salvetat T, Destefanis V, Borel S, et al. ECS Transactions, 2008, 16(10), 439.
44 Kojima M, Kato H, Gatto M, et al. Journal of Applied Physics, 1991, 70(6), 2901.
45 Vähänissi J. Xenon difluoride etching of sacrificial layers for fabrication of microelectromechanical devices.Master's Thesis,Aalto University, Espoo, Finland, 2019.
46 Ibbotson D E, Mucha J A, Flamm D L, et al. Journal of Applied Physics, 1984, 56(10), 2939.
47 Tsai W T. Journal of Hazardous Materials, 2011, 190(1-3), 1.
48 Leinenbach C, Seidel H, Fuchs T, et al.In:2007 IEEE 20th Internatio-nal Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2007,pp. 65.
49 Leinenback C, Kattelus H, Knechtel R, et al. Handbook of silicon based MEMS materials and technologies, Elsevier, Netherlands,2020, pp. 503.
50 Tsai Y H, Wang M. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2022, 40(1), 013201.
51 Loubet N, Kal S, Alix C, et al.In:2019 IEEE International Electron Devices Meeting (IEDM). IEEE, 2019,pp.11.4. 1.
52 Kanarik K J, Lill T, Hudson E A, et al. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2015, 33(2), 020802.
53 Yin X, Zhu H, Zhao L, et al. ECS Journal of Solid State Science and Technology, 2020, 9(3), 034012.
54 Li Y, Zhu H, Kong Z, et al. Nanomaterials, 2021, 11(5), 1209.
55 Li J, Li Y, Zhou N, et al. Materials, 2020, 13(3), 771.
[1] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[2] 张雨, 李瑜婧, 万里强, 黄发荣, 刘坐镇. 聚三唑树脂/氮化硼纳米片复合材料的制备与性能[J]. 材料导报, 2024, 38(8): 22100089-8.
[3] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[4] 余志强, 徐佳敏, 韩旭, 陈诚, 曲信儒, 唐锦, 孙子君, 徐智谋. 金红石TiO2纳米线忆阻器的制备及阻变存储机制[J]. 材料导报, 2024, 38(13): 23020160-7.
[5] 张墅野, 邵建航, 何鹏. 银纳米线透明导电薄膜仿真研究现状[J]. 材料导报, 2024, 38(10): 22110190-10.
[6] 陈露, 朱琦, 孙旭东. 基于稀土层状氢氧化物的荧光材料研究进展[J]. 材料导报, 2023, 37(3): 22090241-10.
[7] 杨长兴, 王固霞, 郭生伟. 油酸改性石墨相氮化碳的制备、表征及摩擦学性能研究[J]. 材料导报, 2023, 37(23): 22100019-7.
[8] 黄贤敏, 李紫薇, 张晓妍, 刘慧, 高红艳, 汪海. 核壳结构的V10O24·12H2O@ACFC:一种高性能对称超级电容器电极材料[J]. 材料导报, 2023, 37(21): 22050088-8.
[9] 陶莹, 马壮, 李思南, 曲涛, 李玲玲. 二维沸石纳米片的合成与应用[J]. 材料导报, 2023, 37(17): 22010235-9.
[10] 苏宇, 翁凌, 王小明, 关丽珠, 张笑瑞. 核壳结构SiCNWs@SiO2/PVDF复合材料的制备与介电储能特性[J]. 材料导报, 2023, 37(11): 22010127-11.
[11] 张姣娇, 王晓君, 张卓雅. 利用碳纳米纤维/Pt纳米片构建柔性电极用于葡萄糖检测[J]. 材料导报, 2022, 36(9): 21010143-6.
[12] 段广宇, 李玥, 胡静文, 胡祖明, 于翔, 迟长龙. 耐高温聚间苯二甲酰间苯二胺介电复合材料的制备及性能[J]. 材料导报, 2022, 36(4): 20120097-6.
[13] 白央, 徐成成, 赵洋, 张荣, 刘清亭, 付旭东, 胡圣飞. 超临界流体制备氮化硼纳米片的研究进展[J]. 材料导报, 2021, 35(7): 7071-7076.
[14] 孙延勇, 朱伟芳, 缑敏敏, 郭瑞丽. 埃洛石纳米管结构改性后用于Pebax基质中强化气体分离[J]. 材料导报, 2021, 35(6): 6174-6179.
[15] 吴黎明, 徐进霞, 范志成, 梅菲, 周远明, 刘凌云. Pt对In2O3纳米线场效应晶体管电学性能的影响[J]. 材料导报, 2021, 35(4): 4028-4033.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed