Please wait a minute...
材料导报  2023, Vol. 37 Issue (17): 22010235-9    https://doi.org/10.11896/cldb.22010235
  无机非金属及其复合材料 |
二维沸石纳米片的合成与应用
陶莹1,2,3,*, 马壮1,2,3,*, 李思南1,3, 曲涛1,3, 李玲玲1,3
1 辽宁科技学院冶金与材料工程学院,辽宁 本溪 117004
2 辽宁工程技术大学矿业学院,辽宁 阜新 123000
3 辽宁本溪低品位非伴生铁矿优化应用重点实验室,辽宁 本溪 117004
Synthesis and Application of 2D Zeolite Nanosheets
TAO Ying1,2,3,*, MA Zhuang1,2,3,*, LI Sinan1,3, QU Tao1,3, LI Lingling1,3
1 School of Metallurgy and Materials Engineering, Liaoning Institute of Science and Technology, Benxi 117004, Liaoning, China
2 College of Mining, Liaoning Technical University, Fuxin 123000, Liaoning, China
3 Liaoning Key Laboratory of Optimization and Utilization of Non-associated Low-grade Iron Ore, Benxi 117004, Liaoning, China
下载:  全 文 ( PDF ) ( 27000KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 二维沸石纳米片结合了二维纳米材料特殊的物理化学性质以及沸石独特的孔道结构,具有电子限域特征、原子厚度、超高的比表面积和大比例的暴露原子,在石油化工、精细化学和能源环境等领域具有广阔的应用前景。加快二维沸石纳米片的设计与开发、实现二维沸石纳米片的规模化可控合成与结构调控、充分发挥二维沸石纳米片的双重优势,是实现其工业化应用的必要前提。本文综述了二维沸石纳米材料的研究进展,介绍了二维沸石纳米片的结构与特点,着重讨论了“自上而下”和“自下而上”两种合成策略及其在分子筛膜和催化剂制备方面的潜在应用,阐述了二维沸石纳米片的发展方向和亟待解决的问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陶莹
马壮
李思南
曲涛
李玲玲
关键词:  沸石纳米片  层状结构  分子筛膜  催化    
Abstract: 2D zeolite nanosheets simultaneously inherit the special physicochemical properties of 2D nanomaterials and the frame structure and channels of zeolite. Featuring their unique characteristics such as electron confinement, atomic thickness, ultra-high specific surface area, and high percentages of exposed atoms, 2D zeolite nanosheets are considered to have wide application potential in the fields of petrochemical industry, fine chemistry, energy and environment. On the other hand, to realize industrial application and to make full use of the material’s dual advantages, intensive research efforts on the design and development of 2D zeolite nanosheets have been made worldwide in recent years, aiming at large-scale and controllable synthesis and structural regulation. Herein, we review the recent progress in research of 2D zeolite nanosheets, by presenting in this paper a brief introduction of structural characteristics, a detailed summary of the specific preparation methods under the perspectives of two diametrically different synthetic strategies, i.e., top-down and bottom-up ones, as well as a description of the potential applications as zeolite membrane and supported catalysts. The paper ends with a prospective discussion giving our understanding about the challenges and existing problems for the future research.
Key words:  zeolite nanosheet    layered structure    zeolite membrane    catalysis
出版日期:  2023-09-10      发布日期:  2023-09-05
ZTFLH:  O643.3  
基金资助: 国家自然科学基金(51802010;51772011);辽宁省自然科学基金(2020-BS-230);辽宁省教育厅基础研究基金(L2020lkyjc-03;L2020lkyjc-05);辽宁科技学院博士科研启动基金项目(2307B23);辽宁省百千万人才工程项目
通讯作者:  *陶莹,辽宁科技学院冶金与材料工程学院讲师,博士,辽宁省“百千万人才工程”万层次人才,本溪市“青年岗位能手”。于2012 年 6 月和 2015 年1 月获得辽宁工程技术大学学士学位和硕士学位,于2022年9月获得辽宁工程技术大学博士学位,指导教师为马壮教授。目前主要从事微纳米材料的可控合成和吸附/催化机制相关研究。在Materials Letters、RSC Advances、《材料导报》《煤炭学报》《材料科学与工艺》《硅酸盐通报》《材料保护》等期刊发表学术论文 20 余篇。taoying234@163.com
马壮,辽宁科技学院教授、辽宁工程技术大学博士研究生导师。1986年辽宁工程技术大学金属热处理专业本科毕业,2010年沈阳工业大学材料加工工程专业博士毕业。目前主要从事微纳米矿物材料合成与改性方面的研究工作。发表学术论文160余篇,包括Journal of Computational & Theoretical NanoscienceTransactions of Nonferrous Me-tals Society of China、Materials Letters、RSC Advances、《材料导报》《煤炭学报》《中国有色金属学报》等。mazh123@263.net   
引用本文:    
陶莹, 马壮, 李思南, 曲涛, 李玲玲. 二维沸石纳米片的合成与应用[J]. 材料导报, 2023, 37(17): 22010235-9.
TAO Ying, MA Zhuang, LI Sinan, QU Tao, LI Lingling. Synthesis and Application of 2D Zeolite Nanosheets. Materials Reports, 2023, 37(17): 22010235-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010235  或          http://www.mater-rep.com/CN/Y2023/V37/I17/22010235
1 Weckhuysen B M, Yu J H. Chemical Society Reviews, 2015, 44(20), 7022.
2 Database of Zeolite Structures, 2017.
3 Guo P, Shin J, Greenaway A G, et al. Nature, 2015, 524(7563), 74.
4 Li Y, Yu J H. Chemical Reviews, 2014, 114(14), 7268.
5 Li J H, Chang H Z, Ma L, et al. Catalysis Today, 2011, 175(1), 147.
6 Derouane E G, Vedrine J C, Pinto R R, et al. Catalysis Reviews, Science and Engineering, 2013, 55(4), 454.
7 Roek P, Król M, Mozgawa W. Journal of Cleaner Production, 2019, 230, 557.
8 Kianfar E, Hajimirzaee S, Mehr A S. Microchemical Journal, 2020, 156, 104822.
9 Liang J, Liang Z B, Zou R Q, et al. Advanced Materials, 2017, 29(30), 1701139.
10 Wang B Y, Yan X M, Zhang X Y, et al. Applied Catalysis B:Environmental, 2020, 266, 118645.
11 Zhao H, Zhu Y, Li F, et al. Angewandte Chemie International Edition, 2017, 129(30), 8892.
12 Choi M, Na K, Kim J, et al. Nature, 2009, 461(7261), 246.
13 Jia B B, Hao R, Huang Z N, et al. Journal of Materials Chemistry A, 2019, 7(9), 4383.
14 Kresge C T, Leonowicz M E, Roth W J, et al. Nature, 1992, 359(6397), 710.
15 Feng F, Wang L, Zhang X, et al. Industrial & Engineering Chemistry Research, 2019, 58(14), 5432.
16 Dai W L, Lei Q F, Wu G J, et al. ACS Catalysis, 2020, 10(23), 14135.
17 Mehlhorn D, Inayat A, Schwieger W, et al. ChemPhysChem, 2014, 15(8), 1681.
18 Varoon K, Zhang X Y, Elyassi B, et al. Science, 2011, 334(6052), 72.
19 Yang C, Gao F Y, Tang X L, et al. Materials Reports, 2020, 34(13), 13005(in Chinese).
杨晨, 高凤雨, 唐晓龙, 等. 材料导报, 2020, 34(13), 13005.
20 Leonowicz M E, Lawton J A, Lawton S L, et al. Science, 1994, 264(5167), 1910.
21 Nicolosi V, Chhowalla M, Kanatzidis M G, et al. Science, 2013, 340(6139), 1226419.
22 Eliášová P, Opanasenko M, Wheatley P S, et al. Chemical Society Reviews, 2015, 44(20), 7177.
23 Corma A, Fornes V, Pergher S B, et al. Nature, 1998, 396(6709), 353.
24 Corma A, Diaz U, Domine M E, et al. Journal of the American Chemical Society, 2000, 122(12), 2804.
25 Sabnis S, Tanna V A, Gulbinski J, et al. Microporous and Mesoporous Materials, 2021, 315, 110883.
26 Rangnekar N, Shete M, Agrawal K V, et al. Angewandte Chemie International Edition, 2015, 54(22), 6571.
27 Zhang H, Xiao Q, Guo X H, et al. Angewandte Chemie International Edition, 2016, 55(25), 7184.
28 Diao D, Zhang H, Wang J, et al. Microporous and Mesoporous Materials, 2022, 330, 111629.
29 Sun Q M, Xie Z K, Yu J H. National Science Review, 2018, 5(4), 542.
30 Guo X K, Xu M X, She M Y, et al. Angewandte Chemie International Edition, 2020, 132(7), 2628.
31 Meng L Y, Wang B, Ma M G, et al. Materials Today Chemistry, 2016, 1, 63.
32 Luo H Y, Michaelis V K, Hodges S, et al. Chemical Science, 2015, 6(11), 6320.
33 Wang L, Sun T T, Yan N N, et al. Acta Physico-Chimica Sinica, 2021, 10(30), 1.
34 Ji Y, Shi B, Yang H, et al. Applied Catalysis A:General, 2017, 533, 90.
35 Na K, Jo C, Kim J, et al. Science, 2011, 333(6040), 328.
36 Na K, Jo C, Kim J, et al. ACS Catalysis, 2011, 1(8), 901.
37 Wang N, Hou Y, Sun W, et al. Applied Catalysis B:Environmental, 2019, 243, 721.
38 Xu H, Chen W, Zhang G Q, et al. Journal of Materials Chemistry A, 2019, 7(28), 16671.
39 Feng X, Zhang P, Fang Y, et al. Catalysis Today, 2020, 343, 206.
40 Zhang L, Fu W, Yu Q, et al. Journal of Catalysis, 2016, 338, 210.
41 Margarit V J, Martínez M E, Navarro M T, et al. Angewandte Chemie International Edition, 2015, 54(46), 13724.
42 Chen H L, Li S W, Wang Y M. Journal of Materials Chemistry A, 2015, 3(11), 5889.
43 Chen H Y, Wang M Y, Yang M F, et al. Journal of Materials Science, 2019, 54(11), 8202.
44 Shan J F, Li Z K, Zhu S H, et al. Catalysts, 2019, 9(2), 121.
45 Korde A, Min B, Almas Q, et al. ChemCatChem, 2019, 11(18), 4548.
46 Meng L, Zhu X, Mezari B, et al. ChemCatChem, 2017, 9(20), 3942.
47 Wei R, Yang H, Scott J A, et al. Applied Materials Today, 2018, 11, 22.
48 Huang X, Wang C, Zhu Y, et al. Microporous and Mesoporous Materials, 2019, 288, 109573.
49 Chang X L,Han L,Guo C B,et al. Materials Reports,2014,28(1),37(in Chinese).
常小玲, 韩丽, 郭存彪, 等. 材料导报, 2014, 28(1), 37.
50 Zhang M Y,Su M H,Meng W,et al. Materials Reports,2016,30(S1),357(in Chinese).
张梦瑶, 苏美慧, 孟万, 等. 材料导报, 2016, 30(S1), 357.
51 Jeon M Y, Kim D, Kumar P, et al. Nature, 2017, 543(7647), 690.
52 Zhang X, Liu D, Xu D, et al. Science, 2012, 336(6089), 1684.
53 Agger J R, Hanif N, Cundy C S, et al. Journal of the American Chemical Society, 2003, 125(3), 830.
54 Fan W, Snyder M A, Kumar S, et al. Nature Materials, 2008, 7(12), 984.
55 Lee P S, Zhang X, Stoeger J A, et al. Journal of the American Chemical Society, 2011, 133(3), 493.
56 Fu W, Feng Y, Fang Z, et al. Chemical Communications, 2016, 52(15), 3115.
57 Gao H X,Li P,Li B,et al. Journal of the Chinese Ceramic Society,2018,46(5),723(in Chinese).
高禾鑫, 李鹏, 李彪, 等. 硅酸盐学报, 2018, 46(5), 723.
58 Wang B, Gao F, Zhang F, et al. Journal of Materials Chemistry A, 2019, 7(21), 13164.
59 Xu D, Ma Y, Jing Z, et al. Nature Communications, 2014, 5(1), 1.
60 Kim J, Cho K, Lee S, et al. Catalysis Today, 2015, 243, 103.
61 Cao Z, Zeng S, Xu Z, et al. Science Advances, 2018, 4(11), 8634.
62 Liu B, Chen Z, Huang J, et al. Microporous and Mesoporous Materials, 2019, 273, 235.
63 Xing A, Zhang N, Yuan D, et al. Industrial & Engineering Chemistry Research, 2019, 58(28), 12506.
64 Shang Y, Wang W, Zhai Y, et al. Microporous and Mesoporous Materials, 2019, 276, 173.
65 Vattipalli V, Paracha A M, Hu W, et al. Angewandte Chemie International Edition, 2018, 57(14), 3607.
66 Di C Y, Li X F, Wang P, et al. Petroleum Science, 2017, 14(1), 203.
67 Min B, Yang S, Korde A, et al. Angewandte Chemie International Edition, 2019, 58(24), 8201.
68 Kim D, Jeon M Y, Stottrup B L, et al. Angewandte Chemie International Edition, 2018, 130(2), 489.
69 Agrawal K V, Topuz B, Jiang Z, et al. AIChE Journal, 2013, 59(9), 345.
70 Agrawal K V, Topuz B, Pham T C T, et al. Advanced Materials, 2015, 27(21), 3243.
71 Wang C, Zheng M, Li X, et al. Green Chemistry, 2019, 21(5), 1006.
72 Zhang C, Huang Y, Zhao H, et al. ACS Applied Nano Materials, 2021, 4(10), 10645.
73 Kim D, Shete M, Tsapatsis M. Chemistry of Materials, 2018, 30(10), 3545.
74 Jung J, Jo C, Mota F M, et al. Applied Catalysis A:General, 2015, 492, 68.
75 Xiao X, Zhang Y, Jiang G, et al. Chemical Communications, 2016, 52(65), 10068.
76 Tian Y, Zhang B, Liang H, et al. Applied Catalysis A:General, 2019, 572, 24.
77 Tian P, Wei Y, Ye M, et al. ACS Catalysis, 2015, 5(3), 1922.
78 Wu W, Tran D T, Wu X, et al. Microporous and Mesoporous Materials, 2019, 278, 414.
79 Liu G, Tian Y, Zhang B, et al. Journal of Hazardous Materials, 2019, 367, 568.
80 Guefrachi Y, Sharma G, Xu D, et al. Angewandte Chemie International Edition, 2020, 132(24), 9666.
81 Yao J, Wu Q, Fan J, et al. ACS Nano, 2021, 15(8), 13568.
82 Wang N, Sun Q, Zhang T, et al. Journal of the American Chemical Society, 2021, 143(18), 6905.
[1] 杨旭, 历新宇, 周娟苹, 姜男哲. 含重金属离子废水处理技术研究进展[J]. 材料导报, 2023, 37(9): 21090197-10.
[2] 郑会勤, 樊耀亭. 基于两个[2Fe2S]化合物的光催化分解水产氢性能及可能的机理[J]. 材料导报, 2023, 37(9): 21050052-8.
[3] 余裕森, 黎氏琼春, 王天, 张利波. 有机酸在超声作用下对废FCC催化剂中有害金属脱除的影响[J]. 材料导报, 2023, 37(8): 21070229-8.
[4] 郭静, 宋旭锋, 于艳敏, 高倩倩. 铁卟啉催化氧化邻、对硝基取代芳烃α-C-H键的密度泛函理论研究[J]. 材料导报, 2023, 37(8): 21110223-6.
[5] 孙墨杰, 王洋, 刘建军, 张士元, 周静, 张庭. 微流控系统制备金属纳米催化剂研究进展[J]. 材料导报, 2023, 37(7): 21040293-9.
[6] 张进治, 谢亮. 复合光催化剂CoFe2O4/BiVO4/电气石的超声-光催化研究[J]. 材料导报, 2023, 37(6): 21090095-6.
[7] 宋丽云, 邓世林, 周宜芸, 李双叶, 展宗城, 李坚, 何洪. V2O5-MoO3/TiO2催化剂的NH3-SCR性能:载体的影响[J]. 材料导报, 2023, 37(6): 21080131-6.
[8] 赵艳艳, 范敬煜, 魏景, 施欢贤. 碳量子点/Bi2WO6复合材料高效光催化降解RhB和杀灭大肠杆菌及其催化活性增强机理研究[J]. 材料导报, 2023, 37(5): 21060126-8.
[9] 于舒睿, 杨继凯, 杨雪, 王国政, 尹笑乾. WO3/CuWO4复合薄膜的制备及光电化学性能[J]. 材料导报, 2023, 37(4): 21070015-6.
[10] 张理元, 阳金菊, 尤佳. 以PVP为软模板构建的层状介孔TiO2及其光催化性能[J]. 材料导报, 2023, 37(4): 21080004-6.
[11] 石现兵, 王涛, 吕明泽, 赵晋, 韩振邦. 树枝状PVDF纳米纤维膜负载TiO2吸附-光催化降解染料废水[J]. 材料导报, 2023, 37(4): 21060080-6.
[12] 鲁浩, 杨强, 孔赟. 金属有机框架材料对水体中有机污染物的吸附去除及氧化降解研究进展[J]. 材料导报, 2023, 37(4): 22060239-13.
[13] 祖丽呼玛尔·木沙江, 赵静, 肖鹏飞. 金属基纳米材料在过硫酸盐高级氧化工艺中的应用进展[J]. 材料导报, 2023, 37(4): 21040022-8.
[14] 刘斌, 王文庆, 于知非, 汤晶, 李正心, 刘天中, 苏革. 氧化石墨烯/氧化铟/两性离子丙烯酸氟化聚合物复合膜的制备及抗牛血清白蛋白性能[J]. 材料导报, 2023, 37(4): 21010165-8.
[15] 江永, 杜亚平. 稀土氧化物复合材料在电催化中的研究进展[J]. 材料导报, 2023, 37(3): 22110067-9.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed