Please wait a minute...
材料导报  2023, Vol. 37 Issue (17): 22010206-7    https://doi.org/10.11896/cldb.22010206
  无机非金属及其复合材料 |
铁尾矿在碱性环境下的溶解特性
张鹏翼1,2,3, 封孝信1,2,3,*, 刘刚1,2,3, 安宇坤1,2,3
1 华北理工大学材料科学与工程学院,河北 唐山 063210
2 河北省无机非金属材料实验室,河北 唐山 063210
3 河北省工业固废综合利用技术创新中心,河北 唐山 063210
The Solubility of Iron Ore Tailing in Alkaline Environment
ZHANG Pengyi1,2,3, FENG Xiaoxin1,2,3,*, LIU Gang1,2,3, AN Yukun1,2,3
1 College of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China
2 Hebei Province Key Laboratory of Inorganic Nonmetallic Materials, Tangshan 063210, Hebei, China
3 Hebei Technology Innovation Center for Comprehensive Utilization of Industrial Solid Waste, Tangshan 063210, Hebei, China
下载:  全 文 ( PDF ) ( 8539KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用球磨机将铁尾矿研磨成细粉,分别浸泡在不同浓度及温度的NaOH溶液和KOH溶液中,浸泡24 h后进行固液分离,并分别采用ICP-OES和XRD分析液相的化学组成和固相的矿物组成。结果显示,在NaOH和KOH溶液中溶出的主要成分是铁尾矿中的Si和Al,而Ca、Mg和Fe的溶解率均非常低,其溶解率顺序为Si>Al>>(Ca,Mg,Fe);Si、Al的溶解率均随溶液碱浓度的增大和溶液温度的升高而增加;当溶液浓度达到10 mol/L或温度达到80 ℃时,Si、Al的溶解率明显增大。铁尾矿中的大部分矿物在碱溶液中会发生溶解或转化,其中石英、钠长石和普通辉石大量溶解;方解石在高碱浓度溶液中转化为羟钙石;赤铁矿和斜绿泥石相对稳定,但赤铁矿在高温时会部分溶解。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张鹏翼
封孝信
刘刚
安宇坤
关键词:  铁尾矿  碱溶液  温度  浓度  溶解率    
Abstract: The iron tailing was ground into powder by ball mill and soaked in NaOH and KOH solutions with different concentrations and temperatures. After soaking for 24 h, the solid-liquid separation was carried out. The chemical composition of the liquid phase and the mineral composition of the solid phase were analyzed by ICP-OES and XRD respectively. The results show that the main components dissolved in NaOH and KOH solutions are Si and Al in iron tailings, while the dissolution amounts of Ca, Fe and Mg are very low, and the order of dissolution amounts is Si>Al>> (Ca, Mg, Fe); the dissolution of Si and Al increases with increasing concentration and temperature. When the solution concentration reached 10 mol/L or the temperature reached 80 ℃, the dissolution increased significantly. Most minerals in iron tailing will be dissolved or transformed in alkali solutions. Quartz, albite and augite are largely dissolved; calcite is transformed into portlandite in high alkali concentration solution; hematite and clinochlore are relatively stable. However, hematite is partially dissolved at high temperature.
Key words:  iron ore tailings    alkali solution    temperature    concentration    dissolution
出版日期:  2023-09-10      发布日期:  2023-09-05
ZTFLH:  TU528.01  
基金资助: 国家自然科学基金(51772098);河北省自然科学基金(E2021209145)
通讯作者:  *封孝信,教授,博士研究生导师。2002年获清华大学材料学博士学位。主要从事水泥基材料及工业固体废弃物资源化利用方面的研究。完成国家自然科学基金项目3项。出版专著1部、编著1部、教材1部。发表学术论文110余篇。fxx@ncst.edu.cn   
作者简介:  张鹏翼,2017年7月于沈阳建筑大学获得工学学士学位。现为华北理工大学材料科学与工程学院硕士研究生,在封孝信教授的指导下进行研究。主要研究领域为新型建筑材料。
引用本文:    
张鹏翼, 封孝信, 刘刚, 安宇坤. 铁尾矿在碱性环境下的溶解特性[J]. 材料导报, 2023, 37(17): 22010206-7.
ZHANG Pengyi, FENG Xiaoxin, LIU Gang, AN Yukun. The Solubility of Iron Ore Tailing in Alkaline Environment. Materials Reports, 2023, 37(17): 22010206-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010206  或          http://www.mater-rep.com/CN/Y2023/V37/I17/22010206
1 Shu M, Liu K, Li D J, et al. China Standardization, 2021(11), 154 (in Chinese).
舒敏, 刘昆, 李德军, 等. 中国标准化, 2021(11), 154.
2 Davidovits J. In:1st European Conference on Soft Mineralurgy, Compiegne. France, 1988, pp. 25.
3 Van Jaarsveld J G S, Van Deventer J S J, Lorenzen L. Metallurgical and Materials Transactions B, 1998, 29B, 283.
4 Xu H, Van Deventer J S J. International Journal of Mineral Processing, 2000, 59, 247.
5 Van Deventer J S J, Provis J L, Duxson P, et al. Journal of Hazardous Materials, 2007, A139, 506.
6 Brantley S L, Conrad C F. Kinetics of water-rock Interaction, Springer, New York, 2008, pp. 151.
7 Zhang M, El-korchi T, Zhang G, et al. Fuel, 2014, 134, 315.
8 Zhang Z, Provis J L, Reid A, et al. Construction and Building Materials, 2014, 56, 113.
9 Duxson P, Provis J L, Lukey G C, et al. Langmuir, 2005, 21(7), 3028.
10 Rahier H, Simons W, Van M B, et al. Journal of Materials Science, 1997, 32(9), 2237.
11 Bagheri M, Lothenbach B, Shakoorioskooie M, et al. Cement and Concrete Composites, 2021, 124, 104260.
12 Emmanuel E, Paris M, Deneele D. Applied Clay Science, 2019, 181, 105210.
13 Aldabsheh I, Khoury H, Wastiels J, et al. Applied Clay Science, 2015, 115, 238.
14 Wang Y L, Luo S H, Jiang M F, et al. Multipurpose Utilization of Mineral Resources, 2019(5), 121 (in Chinese).
汪应玲, 罗绍华, 姜茂发, 等. 矿产综合利用, 2019(5), 121.
15 Wang M C, Zhang H L, Chen Y L, et al. China Mining Magazine, 2019, 28(8), 170 (in Chinese).
王梦婵, 张惠灵, 陈永亮, 等. 中国矿业, 2019, 28(8), 170.
16 Chen Y L, Wu S Y, Qi C H, et al. Metal Mine, 2019(4), 199 (in Chinese).
陈永亮, 武诗怡, 齐辰晖, 等. 金属矿山, 2019(4), 199.
17 Liu X, Cui X W. Journal of Shangluo University, 2016, 30(2), 43 (in Chinese).
刘璇, 崔孝炜. 商洛学院学报, 2016, 30(2), 43.
18 Duan P, Yan C, Zhou W, et al. Ceramics International, 2016, 42(12), 13507
19 Liu S X, Nie Y M, Niu F S. Metal Mine, 2010(9), 182 (in Chinese).
刘淑贤, 聂轶苗, 牛福生. 金属矿山, 2010(9), 182.
20 Das P, Beulah M, Hossiney N, et al. Journal of Mining and Metallurgy A, Mining, 2019, 55(1), 27.
21 Defaveri K C S, Santos L F, Carvalho J M F, et al. Construction and Building Materials, 2019, 220, 375.
22 Jiang Y F, Wu L, Liu Y. New Building Materials, 2019(9), 57 (in Chinese).
姜玉凤, 吴璐, 刘宇. 新型建筑材料, 2019(9), 57.
23 Jiang N. Shaanxi Water Resources, 2019(9), 214 (in Chinese).
姜楠. 陕西水利, 2019(9), 214.
24 Peng L. Research on silica a lumina activity stimulation of iron tailings and filling cementitious materials based on iron tailings. Master’s Thesis, Chongqing University, China, 2014 (in Chinese).
彭链. 铁尾矿硅铝活性激发及铁尾矿基充填胶凝材料制备技术研究. 硕士学位论文, 重庆大学, 2014.
25 Prashant K, Nawal M, Yasunori O, et al. Journal of Materials Chemistry, 2001, 11(12), 3285.
26 Perumal P, Piekkari K, Sreenivasan H, et al. Minerals Engineering, 2019, 144, 106026.
27 Zhao J, Brugger J, Pring A. Geoscience Frontiers, 2019, 10(1), 29.
[1] 何承绪, 高洁, 毛航银, 马光, 陈新, 祝志祥, 张一航, 胡卓超. 退火温度对耐热型取向硅钢组织与磁性能的影响[J]. 材料导报, 2023, 37(8): 21090231-5.
[2] 卢超, 曹建春, 陈伟, 刘星, 张永青, 阴树标. 再加热温度对Nb微合金化钢筋连续冷却相变及组织与性能的影响[J]. 材料导报, 2023, 37(8): 21100016-8.
[3] 孔丽娟, 梁增蕴, 鹿桓, 赵文静. 重力污水管道混凝土的加速腐蚀模拟研究[J]. 材料导报, 2023, 37(7): 21060148-7.
[4] 刘维赛, 陈晓怡, 智文科, 王旭泉, 王飞. 镧系金属有机框架化合物在发光传感检测领域的研究进展[J]. 材料导报, 2023, 37(5): 21030231-12.
[5] 李良, 赵修贤, 王彬彬, 杨帅军, 聂永, 蒋绪川. 热致变色过渡金属配合物的变色机理及应用[J]. 材料导报, 2023, 37(4): 21010049-11.
[6] 陈露, 朱琦, 孙旭东. 基于稀土层状氢氧化物的荧光材料研究进展[J]. 材料导报, 2023, 37(3): 22090241-10.
[7] 余波, 黄俊铭, 卢金马, 杨绿峰. 水泥基材料中钢筋脱钝临界氯离子浓度的加速测试装置及方法[J]. 材料导报, 2023, 37(3): 21030054-6.
[8] 罗翔, 米振莉, 吴彦欣, 杨永刚, 江海涛, 胡宽辉. 退火温度对LH800空冷强化钢组织与力学性能的影响[J]. 材料导报, 2023, 37(3): 21080047-6.
[9] 朱高凡, 杨新异, 曹海波, 黄群英. 球磨时间和退火温度对氧化物弥散强化合金粉末结构的影响[J]. 材料导报, 2023, 37(17): 22030177-6.
[10] 王言磊, 陆军, 梁鹏飞, 罗婷, 颜川奇. 不同温拌剂对高黏沥青流变及微观特性影响研究[J]. 材料导报, 2023, 37(16): 22010171-6.
[11] 周珍珍, 汪佐瑾, 焦世舜, 曹睿. 不同轧制温度对AlCoCrFeNi2.1共晶高熵合金组织与力学性能的影响[J]. 材料导报, 2023, 37(16): 21120021-6.
[12] 范晓光, 雷景胜, 顾诗雅, 冷旭, 刘畅, 杨磊. 利用NVP组分调控亲水增强型温敏性PNIPAAm共聚物[J]. 材料导报, 2023, 37(15): 21100186-7.
[13] 常耀东, 齐会萍, 贾燕龙, 杨凯峰, 裴庆林, 熊波. 离心铸造双金属环件热辗扩实验研究[J]. 材料导报, 2023, 37(14): 21110004-8.
[14] 宫兴, 英红, 梁凤芯, 刘卫东, 许修权. 降低沥青路面温度的双向热诱导相变结构研究[J]. 材料导报, 2023, 37(13): 21040242-6.
[15] 徐玲琳, 欧阳军, 杨肯, 徐名凤, 周健. 养护温度对矿渣硫铝酸盐水泥水化的影响机理[J]. 材料导报, 2023, 37(11): 21100065-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed