Please wait a minute...
材料导报  2023, Vol. 37 Issue (17): 22030177-6    https://doi.org/10.11896/cldb.22030177
  金属与金属基复合材料 |
球磨时间和退火温度对氧化物弥散强化合金粉末结构的影响
朱高凡1,2, 杨新异1,2, 曹海波1, 黄群英1,2,*
1 中国科学院合肥物质科学研究院,核能安全技术研究所,合肥 230031
2 中国科学技术大学研究生院科学岛分院,合肥 230026
Effect of Ball Milling Time and Annealing Temperature on the Structure of ODS Alloy Powders
ZHU Gaofan1,2, YANG Xinyi1,2, CAO Haibo1, HUANG Qunying1,2,*
1 Institute of Nuclear Energy Safety Technology, Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
2 Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230026, China
下载:  全 文 ( PDF ) ( 52119KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究铁基氧化物弥散强化(ODS)合金粉末中氧化物的结构演变过程与规律,采用行星式球磨机制备了高Y2O3含量的粉末,并在400~1 200 ℃范围内退火1 h,利用XRD、SEM和TEM研究了球磨和退火后粉末的结构变化。结果表明,球磨前期粉末尺寸较大,内部缺陷较多,球磨至48 h时,粉末粒径主要分布在5 μm以下,Fe晶粒细化至约20 nm,Y2O3与基体均匀分布,且在球磨过程中出现了少量的Y2Ti2O7相。针对不同退火温度的研究结果显示,退火温度在600 ℃时开始析出YTiO3相,在1 000 ℃时开始析出Y2Ti2O7相,随着退火温度升高,氧化物逐渐扩散至粉末表层,退火温度超过1 000 ℃时粉末内部Y-Ti-O相比例减少较为明显。ODS粉末的微观结构分析及相关结论可为制备高性能核反应堆结构材料提供一定的借鉴与参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱高凡
杨新异
曹海波
黄群英
关键词:  氧化物弥散强化  球磨时间  氧化物  退火温度    
Abstract: To study the structural evolution of minor oxide in ODS steel, a high Y2O3 content powder was prepared by planetary ball milling and annealed at 400—1 200 ℃ for 1 h. The microstructure of the powders was observed with XRD, SEM and TEM. The results show that in the early stage of ball milling, the powder size was larger and the internal defects were more. When ball milling to 48 h, the powder size was less than 5 μm, the Fe grain size was refined to about 20 nm, Y2O3 was uniform distribution with the matrix and the Y2Ti2O7 phase appeared during the ball milling process. During annealing, YTiO3 and Y2Ti2O7 phases precipitated at 600 ℃ and 1 000 ℃, respectively. With the increase of annealing temperature, the oxides gradually diffuse to the surface layer of the powders. When the annealing temperature exceeded 1 000 ℃, the number of Y-Ti-O phases in the powders reduced obviously. The microstructure analysis and conclusions on ODS powders can give some guidance to fabricate high performance structural materials for nuclear reactor.
Key words:  oxide dispersion strengthened (ODS)    milling time    oxide    annealing temperature
出版日期:  2023-09-10      发布日期:  2023-09-05
ZTFLH:  TF122  
基金资助: 中国科学院国际合作局国际伙伴计划(116134KYSB20200056)
通讯作者:  *黄群英,中科院合肥物质科学研究院二级研究员、博士研究生导师,享受国务院特殊津贴的专家。1986年7月于西安交通大学反应堆工程与安全专业本科毕业,1989年6月于西安交通大学反应堆工程与安全专业硕士毕业,2006年7月于中科院等离子体物理研究所核能科学与工程专业博士毕业,1989年至今在中科院合肥物质科学研究院工作。目前主要从事先进反应堆设计、反应堆材料及堆关键技术研发、反应堆先进计算方法与软件的开发研究等工作,公开发表学术论文210余篇,获授权国家发明专利90余项,国际发明专利2项,国家标准2项,团体/行业标准3项。成果先后获国家自然科学二等奖、国家科技进步三等奖、国家能源科技进步一等奖等。qunying.huang@inest.cas.cn   
作者简介:  朱高凡,2019年6月于合肥工业大学获得工学学士学位。现为中国科学技术大学科学岛分院核能安全技术研究所博士研究生,在黄群英教授的指导下进行研究。目前主要研究领域为耐热抗辐照结构材料研发。
引用本文:    
朱高凡, 杨新异, 曹海波, 黄群英. 球磨时间和退火温度对氧化物弥散强化合金粉末结构的影响[J]. 材料导报, 2023, 37(17): 22030177-6.
ZHU Gaofan, YANG Xinyi, CAO Haibo, HUANG Qunying. Effect of Ball Milling Time and Annealing Temperature on the Structure of ODS Alloy Powders. Materials Reports, 2023, 37(17): 22030177-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030177  或          http://www.mater-rep.com/CN/Y2023/V37/I17/22030177
1 Oka H, Tanno T, Yano Y, et al. Journal of Nuclear Materials, 2021, 547, 152833.
2 Zheng P, Li Y, Zhang J, et al. Materials Science and Engineering A, 2020, 783, 139292.
3 Odette G R, Alinger M J, Wirth B D. Annual Review of Materials Research, 2008, 38, 471.
4 Benjamin J S, Bomford M J. Metallurgical Transactions, 1974, 5(3), 165.
5 Lu C, Lu Z, Liu C. Journal of Nuclear Materials, 2013, 442(1-3), S148.
6 Miller M K, Parish C M, Li Q. Materials Science and Technology, 2013, 29(10), 1174.
7 Zinkle S J, Snead L L. Annual Review of Materials Research, 2014, 44, 241.
8 Hoffmann J, Rieth M, Lindau R, et al. Journal of Nuclear Materials, 2013, 442(1-3), 444.
9 Williams C A, Unifantowicz P, Baluc N. Acta Materialia, 2013, 61(6), 2219.
10 Ukai S, Mizuta S, Fujiwara M, et al. Journal of Nuclear Science and Technology, 2002, 39(7), 778.
11 Lu C, Lu Z, Xie R, et al. Materials Characterization, 2017, 134, 35.
12 Barnard L, Cunningham N, Odette G R, et al. Acta Materialia, 2015, 91, 340.
13 Rajulapati S K, Saggurthi A D, Yadav A S, et al. Materials Today: Proceedings, 2018, 5(9), 16904.
14 Dai L, Liu Y, Dong Z. Powder Technology, 2012, 217, 281.
15 Saber M, Xu W, Li L, et al. Journal of Nuclear Materials, 2014, 452(1-3), 223.
16 Parida P K, Dasgupta A, Jayasankar K, et al. Journal of Nuclear Materials, 2013, 441(1-3), 331.
17 Liu T, Shen H, Wang C, et al. Materials International, 2013, 23(4), 434.
18 Toualbi L, Ratti M, Andre G, et al. Journal of Nuclear Materials, 2011, 417(1-3), 225.
19 Li R, Gong L, Lin J, et al. Ceramics International, 2019, 45(16), 20011.
20 Parida P K, Dasgupta A, Srihari V, et al. Advanced Powder Technology, 2020, 31(4), 1665.
21 Lu C, Lu Z, Xie R, et al. Materials Characterization, 2017, 134, 35.
22 He P, Klimenkov M, Lindau R, et al. Journal of Nuclear Materials, 2012, 428(1-3), 131.
23 Oksiuta Z, Baluc N. Journal of Nuclear Materials, 2009, 386-388, 426.
24 Kim J H, Byun T S, Hoelzer D T. Journal of Nuclear Materials, 2010, 407(3), 143.
25 Liu T, Wang L, Wang C, et al. Materials & Design, 2015, 88, 862.
26 Alinger M J, Odette G R, Hoelzer D T. Acta Materialia, 2009, 57(2), 392.
27 Alinger M J, Odette G R, Hoelzer D T. Journal of Nuclear Materials, 2004, 329-333, 382.
28 Ramar A, Oksiuta Z, Baluc N, et al. Fusion Engineering and Design, 2007, 82(15-24), 2543.
29 Rane G K, Welzel U, Meka S R, et al. Acta Materialia, 2013, 61(12), 4524.
30 Suryanarayana C, Ivanov E, Boldyrev V V. Materials Science and Engineering A, 2001, 304-306, 151.
31 Williams C A, Unifantowicz P, Baluc N, et al. Acta Materialia, 2013, 61(6), 2219.
32 Kim S W, Shobu T, Ohtsuka S, et al. Materials Transactions, 2009, 50(4), 917.
33 Zhang J, Li Y, Bao F, et al. Advanced Powder Technology, 2021, 32(2), 582.
34 Das A, Chekhonin P, Altstadt E, et al. Journal of Nuclear Materials, 2020, 533, 152083.
[1] 夏鹏, 傅萍, 黄金华, 李佳, 宋伟杰. 硅异质结太阳能电池用透明导电氧化物薄膜的研究现状及发展趋势[J]. 材料导报, 2023, 37(9): 22090082-9.
[2] 何承绪, 高洁, 毛航银, 马光, 陈新, 祝志祥, 张一航, 胡卓超. 退火温度对耐热型取向硅钢组织与磁性能的影响[J]. 材料导报, 2023, 37(8): 21090231-5.
[3] 王歆銘, 马晓宇, 崔素萍, 王剑锋, 王亚丽, 马骥堃. 钢渣内部金属氧化物调控提高干法脱硫性能研究[J]. 材料导报, 2023, 37(8): 21090022-4.
[4] 胡时光, 郭鹏凯, 钱韫娴, 张光照, 王军, 邓永红, 王朝阳. 氟代线性碳酸酯对高电压LiNi0.5Co0.2Mn0.3O2/人造石墨软包电池性能的影响[J]. 材料导报, 2023, 37(8): 22050331-7.
[5] 陈露, 朱琦, 孙旭东. 基于稀土层状氢氧化物的荧光材料研究进展[J]. 材料导报, 2023, 37(3): 22090241-10.
[6] 江永, 杜亚平. 稀土氧化物复合材料在电催化中的研究进展[J]. 材料导报, 2023, 37(3): 22110067-9.
[7] 张家庆, 张达, 陈昆峰, 薛冬峰, 梁风. 稀土改性锂基氧化物固态电解质研究现状与展望[J]. 材料导报, 2023, 37(3): 22110300-9.
[8] 刘锋, 陈昆峰, 薛冬峰. 稀土倍半氧化物晶体材料研究进展[J]. 材料导报, 2023, 37(3): 22110093-7.
[9] 孙加营, 方杨飞, 张一波, 刘秋文, 刘凯杰, 杨向光. CuO修饰CeO2纳米复合磨料的制备及抛光性能[J]. 材料导报, 2023, 37(3): 22120092-5.
[10] 罗翔, 米振莉, 吴彦欣, 杨永刚, 江海涛, 胡宽辉. 退火温度对LH800空冷强化钢组织与力学性能的影响[J]. 材料导报, 2023, 37(3): 21080047-6.
[11] 杨新异, 黄群英. 球磨转速对含钆ODS钢中M23C6析出的影响研究[J]. 材料导报, 2023, 37(17): 22030003-6.
[12] 黄馨月, 雷小峰, 冯文林, 吴畏, 孙权. 基于金属氧化物敏感材料的一氧化碳传感器研究进展[J]. 材料导报, 2023, 37(15): 21100240-11.
[13] 刘源涛, 王琰帅, 董必钦. 偏铝酸钠激发石灰石粉的胶凝材料合成机理研究[J]. 材料导报, 2023, 37(1): 22030034-5.
[14] 陈丹, 宋琛, 杜柯, 郭宇, 刘志义, 刘太楷, 刘敏. 沉积温度对等离子喷涂金属支撑型固体氧化物燃料电池结构及电化学性能的影响[J]. 材料导报, 2022, 36(Z1): 22030119-5.
[15] 赵颖平, 陶平, 李文华, 闵秀博, 余忆玄, 孙天军. 载体改性提高船舶尾气锰铬催化剂的脱硝性能[J]. 材料导报, 2022, 36(Z1): 21080248-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed