Please wait a minute...
材料导报  2023, Vol. 37 Issue (17): 22010205-6    https://doi.org/10.11896/cldb.22010205
  无机非金属及其复合材料 |
自组装烧结法可控合成钛酸钡微纳米陶瓷的效果和适用范围研究
宋恩鹏1,*, 靳权1, 刘钊2, 陈奋华2, 蔡克1
1 中国石油集团工程材料研究院有限公司,西安 710077
2 中国石油长庆油田分公司物资供应处,西安 710016
Study on the Effect and Application Scope of Controllably Synthesizing the Barium Titanate Micro-nano Ceramics by the Self-assembly and Sintering Method
SONG Enpeng1,*, JIN Quan1, LIU Zhao2, CHEN Fenhua2, CAI Ke1
1 CNPC Tubular Goods Research Institute, Xi’an 710077, China
2 Material Supply Department, PetroChina Changqing Oilfield Company, Xi’an 710016, China
下载:  全 文 ( PDF ) ( 20631KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 微纳米钛酸钡陶瓷(BaTiO3)是多层陶瓷电容器(Multilayer ceramic capacitors,MLCCs)的关键材料,其可控合成受到研究者的广泛关注。本工作采用自组装烧结法制备了具有不同晶粒尺寸的微纳米BaTiO3陶瓷,从样品的相对密度、晶粒尺寸和介电性能研究了该方法在可控合成微纳米BaTiO3陶瓷时的效果和适用范围。结果表明,采用二元粒径自组装烧结法,通过合理选择BaTiO3粉体尺寸和组合方式,实现了可控合成不同晶粒尺寸的陶瓷;采用三元和四元粒径自组装烧结法,虽然提高了陶瓷的相对密度,但是降低了晶粒尺寸的可控性。因此,采用二元粒径自组装烧结法有利于可控合成微纳米BaTiO3陶瓷。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋恩鹏
靳权
刘钊
陈奋华
蔡克
关键词:  钛酸钡  相对密度  晶粒尺寸  介电性能  自组装烧结法  可控合成    
Abstract: Because themicro-nano barium titanate ceramics (BaTiO3) are the key materials of the multilayer ceramic capacitors (MLCCs), the researchers focus on synthesizing them controllably. In this work, the micro-nano BaTiO3 ceramics with different sizes were prepared by a self-assembly sintering method. We have researched the effects and application scopes of this method to synthesize the micro-nano BaTiO3 ceramics controllably by investigating the relative density, grain size, and dielectric properties. We can controllably prepared the ceramics with different grain sizes by the binary particle size self-assembly sintering method, that is, selecting the BaTiO3 powder sizes and combination method reaso-nably. Although the relative density of the ceramics were improved via the ternary and quaternary grain size self-assembly sintering methods, the controllability of grain size were reduced simultaneously. Therefore, it is beneficial to synthesize the micro-nano BaTiO3 ceramics controllably though the binary particle size one.
Key words:  barium titanate    relative density    grain size    dielectric properties    self-assembly sintering method    controllable synthesis
出版日期:  2023-09-10      发布日期:  2023-09-05
ZTFLH:  TQ174  
基金资助: 国家自然科学基金(21071115);陕西省自然科学基金重点项目(2020JZ-44);陕西省自然科学基金(2019TD-007)
通讯作者:  *宋恩鹏,分别于2011年6月、2014年4月于西安电子科技大学获得工学学士学位和硕士学位。现工作于中国石油集团工程材料研究院有限公司,现主要从事陶瓷材料制备和油气增产研究工作。songep@cnpc.com.cn   
引用本文:    
宋恩鹏, 靳权, 刘钊, 陈奋华, 蔡克. 自组装烧结法可控合成钛酸钡微纳米陶瓷的效果和适用范围研究[J]. 材料导报, 2023, 37(17): 22010205-6.
SONG Enpeng, JIN Quan, LIU Zhao, CHEN Fenhua, CAI Ke. Study on the Effect and Application Scope of Controllably Synthesizing the Barium Titanate Micro-nano Ceramics by the Self-assembly and Sintering Method. Materials Reports, 2023, 37(17): 22010205-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010205  或          http://www.mater-rep.com/CN/Y2023/V37/I17/22010205
1 Li J L, Li F, Xu Z, Zhang S J. Advanced Materials, 2018, 30(32), 1802155. 1.
2 Hao X H. Journal of Advanced Dielectrics, 2013, 3(1), 1330001.
3 Zhou M X, Liang R H, Zhou Z Y, et al. Journal of Materials Chemistry C, 2018, 6(31), 8528.
4 Wang G, Li J L, Zhang X, , et al. Energy & Environmental Science, 2019, 12(2), 582.
5 Huang Y H, Wu Y J, Liu B, et al. Journal of Materials Chemistry A, 2018, 6(10), 4477.
6 Xiao C J, Chi Z H, Feng S M, et al. Journal of Electroceramics, 2008, 21(1-4), 39.
7 Horr N E, Valdez-Nava Z, Tenailleau C, et al. Journal of the European Ceramic Society, 2011, 31(6), 1087.
8 Guo H, Guo J, Baker A, et al. ACS Applied Materials and Interfaces, 2016, 8(32), 20909.
9 Lóh N J, Simão L, Faller C A, et al. Ceramics International, 2016, 42(11), 12556.
10 Yu N, Hidehiro Y, Akinori U, et al. Journal of the American Ceramic Society, 2017, 100(9), 3843.
11 Hyun T K, Young H H. Ceramics International, 2004, 30(7), 1719.
12 Legallais M, Fourcade S, Chung U C, et al. Journal of the European Ceramic Society, 2018, 38(2), 543.
13 Xie M Q, Che Y X, Liu K, et al. Advanced Functional Materials, 2018, 28(36), 1803370. 1.
14 Guo J, Guo H Z, Baker A L, et al. Angewandte Chemie, 2016, 128(38), 11629.
15 Guo H, Baker A, J Guo, et al. Journal of the American Ceramic Society, 2016, 99(11), 3489.
16 Huan Y, Wang X H, Fang J, et al. Journal of the American Ceramic Society, 2013, 96(11), 3369.
17 Huan Y, Wang X H, Fang J, et al. Journal of the European Ceramic Society, 2014, 34(5), 1445.
18 Tingaud D, Jenei P, Krawczynska A, et al. Materials Characterization, 2015, 99, 118.
19 Shan Y C, Zhang Z H, Sun X N, et al. Journal of the European Ceramic Society, 2016, 36(3), 671.
20 Hirata Y, Fujita H, Shimonosono T. Ceramics International, 2017, 43(2), 1895.
21 Oh J W, Seong Y J, Shin D S, et al. Powder Technology, 2019, 352(15), 42.
22 Xu H Y, Zou J, Wang W M, et al. Journal of the European Ceramic Society, 2021, 41(1), 635.
23 Zhai X Y, Chen Y J, Ma Y Q, et al. Ceramics International, 2020, 46(9), 13660.
24 Jin Q, Cui B, Zhang X T, et al. Journal of Electronic Materials, 2021, 50(1), 325.
25 Yang Y, Gao L, Lopez G P, et al. Acs Nano, 2013, 7(3), 270.
26 Shah A A, Ganesan M, Jocz J, et al. Acs Nano, 2014, 8(8), 8095.
27 Cong H, Yu B, Tang J, et al. Chemical Society Reviews, 2013, 42(19), 7774.
28 Ding H P, Zhao Z K, Jin J S, et al. Journal of Alloys and Compounds, 2021, 850, 156724.
29 Ndayishimiye A, Sengul M Y, Bang S H, et al. Journal of the European Ceramic Society, 2020, 40(4), 1312.
30 Liu J M, Rongxia H, Zhang R B, et al. Scripta Materialia, 2020, 187, 93.
[1] 刘雄飞, 和西民. 低应变率荷载作用下梯度泡沫铝力学性能研究[J]. 材料导报, 2023, 37(7): 22010266-7.
[2] 张冠星, 董宏伟, 钟素娟, 薛行雁, 刘晓芳, 常云峰. BAg30CuZnSn退火过程中组织性能演变[J]. 材料导报, 2023, 37(6): 21070103-4.
[3] 章国涛, 高艳, 刘书利, 孟德喜, 高娜燕, 郑勇. 低介电损耗Ca1-xSrxMgSi2O6微波介质陶瓷的结构和介电性能[J]. 材料导报, 2023, 37(4): 21080295-5.
[4] 李小龙, 王坦, 左孝青, 代彪, 周芸. 液相网络及相对密度对SiCp/2024复合材料显微组织与力学性能的影响[J]. 材料导报, 2023, 37(14): 21120017-6.
[5] 苏宇, 翁凌, 王小明, 关丽珠, 张笑瑞. 核壳结构SiCNWs@SiO2/PVDF复合材料的制备与介电储能特性[J]. 材料导报, 2023, 37(11): 22010127-11.
[6] 赵瑞钰, 欧阳琪, 马名生, 陆毅青, 魏红康, 刘志甫. Bi0.5Na0.5TiO3和Bi0.5K0.5TiO3含量对三元固溶体系无铅PTC热敏陶瓷性能的影响[J]. 材料导报, 2023, 37(10): 21110026-6.
[7] 汪叶舟, 曲绍宁, 尹训茜. 填充型聚合物基介电储能复合材料的研究进展[J]. 材料导报, 2022, 36(4): 20080076-7.
[8] 段广宇, 李玥, 胡静文, 胡祖明, 于翔, 迟长龙. 耐高温聚间苯二甲酰间苯二胺介电复合材料的制备及性能[J]. 材料导报, 2022, 36(4): 20120097-6.
[9] 刘锦, 梁炳亮, 张建军, 艾云龙. 微波烧结微波介质陶瓷的研究进展[J]. 材料导报, 2022, 36(3): 20040130-10.
[10] 孙赫男, 关岩, 毕万利, 孙美硕. 烧结氧化镁粉的晶体特征对磷酸镁水泥力学性能的影响[J]. 材料导报, 2022, 36(19): 20120126-6.
[11] 刘艳辉, 马鸣龙, 张奎, 李兴刚, 李永军, 石国梁, 袁家伟. 镁合金电磁屏蔽性能的研究进展[J]. 材料导报, 2022, 36(18): 20070297-6.
[12] 谢功园, 王轶, 陈宇强, 刘文辉, 潘素平, 宋宇峰, 刘阳, 谭欣荣. 换向轧制对铜晶粒尺寸高温热稳定性的影响[J]. 材料导报, 2022, 36(18): 21010236-7.
[13] 董万龙, 曹睿, 蒋勇, 杨飞, 黄义芳, 徐晓龙, 陈剑虹. Cr-Mo-V耐热钢焊条电弧焊焊缝金属低温冲击韧性研究[J]. 材料导报, 2022, 36(15): 20120001-5.
[14] 黎业华, 聂光临, 盛鹏飞, 邓欣, 包亦望, 伍尚华. Al2O3陶瓷增材制造工艺研究进展[J]. 材料导报, 2022, 36(14): 20110097-12.
[15] 关嘉怡, 张刚华, 曾涛, 白建峰, 顾卫华. 利用高压手段调控铁电材料结构与性能的研究进展[J]. 材料导报, 2022, 36(12): 20110057-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed