Please wait a minute...
材料导报  2024, Vol. 38 Issue (9): 22110018-8    https://doi.org/10.11896/cldb.22110018
  无机非金属及其复合材料 |
火灾下活性粉末混凝土梁斜截面承载性能研究
闫凯1,2,*, 张倩1,2, 黄彬超1,2, 张鑫1,2
1 山东建筑大学土木工程学院,济南 250101
2 建筑结构加固改造与地下空间工程教育部重点实验室,济南 250101
Study on Load-Carrying Properties of Inclined Section of Reactive Powder Concrete Beam Under Fire
YAN Kai1,2,*, ZHANG Qian1,2, HUANG Binchao1,2, ZHANG Xin1,2
1 School of Civil Engineering, Shandong Jianzhu University, Jinan 250101, China
2 Key Laboratory of Building Structural Retrofitting and Underground Space Engineering (Shandong Jianzhu University), Ministry of Education, Jinan 250101, China
下载:  全 文 ( PDF ) ( 9249KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探明火灾下活性粉末混凝土(Receative power concrete,RPC)梁斜截面承载性能退化规律,设计制作了六根RPC简支梁试件,开展了恒载下ISO834标准火灾试验,获得了时间-位移曲线、荷载-位移曲线、内部温度变化、裂缝开展、破坏形态、高温爆裂等数据,分析了剪跨比、荷载水平、配箍率、纵筋配筋率对火灾下RPC梁斜截面承载性能的影响规律。结果表明:剪跨比、荷载水平是影响RPC 梁斜截面耐火极限的关键因素,剪跨比由2.5增至3.5,荷载水平由0.25增至0.45,RPC 梁耐火极限可降低30 min以上;配箍率对RPC梁的斜截面承载力和耐火极限影响显著;纵筋配筋率对RPC梁耐火极限影响甚微。火灾高温、爆裂削弱了RPC梁的斜截面承载性能,爆裂导致内部材料直接受火,加速其力学性能劣化,使梁斜截面承载力降低33.5%以上。该研究可为火灾下RPC梁斜截面承载安全及火灾后加固修复提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
闫凯
张倩
黄彬超
张鑫
关键词:  活性粉末混凝土梁  抗火试验  耐火极限  斜截面承载力    
Abstract: In order to find out the degradation law of the bearing capacity of the inclined section of reactive power concrete (RPC) beams under fire, six RPC simply supported beam specimens were designed and made, and ISO834 standard fire tests were carried out under dead load. Data such as time-displacement curve, load-displacement curve, internal temperature variation, crack development, failure pattern and high temperature bursting were obtained. The influences of shear-span ratio, load level, hoop ratio and longitudinal reinforcement ratio on the bearing performance of RPC beam in oblique section under fire were analyzed. The results show that the shear span ratio and load level are the key factors affecting the fire resistance limit of RPC beam. When the shear span ratio increases from 2.5 to 3.5 and the load level increases from 0.25 to 0.45, the fire resistance limit of RPC beam can be reduced for more than 30 min. The stirrup ratio has a significant effect on the oblique bearing capacity and fire resistance limit of RPC beams. The reinforcement ratio of longitudinal reinforcement has little influence on the fire resistance limit of RPC beams. Fire high temperature and burst weakened the oblique section bearing capacity of RPC beams. The burst caused the internal materials to be directly subjected to fire, which accelerated the deterioration of mechanical properties and reduced the oblique section bearing capacity of beams by more than 33.5%. The research results can provide reference for the bearing safety of oblique section of RPC beam under fire and the reinforcement and repair after fire.
Key words:  reactive powder concrete (RPC) beams    the fire resistant test    refractory limit    oblique section bearing capacity
出版日期:  2024-05-10      发布日期:  2024-05-13
ZTFLH:  TU378.2  
  TU317.1  
基金资助: 国家自然科学基金(52378520;52038006;52308510);泰山人才工程(tsqn202211181)
通讯作者:  * 闫凯,山东建筑大学教授、硕士研究生导师。2013年获哈尔滨工业大学工学博士学位并留校参加工作,2016年澳大利亚格里菲斯大学访问学者。目前主要研究方向为工程结构抗火、既有结构加固改造与性能提升。先后在《建筑结构学报》、Steel and Composite Structures、Safety Science等期刊上发表学术论文40余篇。yankai@sdjzu.edu.cn   
引用本文:    
闫凯, 张倩, 黄彬超, 张鑫. 火灾下活性粉末混凝土梁斜截面承载性能研究[J]. 材料导报, 2024, 38(9): 22110018-8.
YAN Kai, ZHANG Qian, HUANG Binchao, ZHANG Xin. Study on Load-Carrying Properties of Inclined Section of Reactive Powder Concrete Beam Under Fire. Materials Reports, 2024, 38(9): 22110018-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110018  或          http://www.mater-rep.com/CN/Y2024/V38/I9/22110018
1 Kou J L,Liu Y H, Zhang H B. Building Structure, 2018, 48(2), 47 (in Chinese).
寇佳亮, 刘云昊, 张浩博. 建筑结构, 2018, 48(2), 47.
2 Wang D C,Shi C J, Wu L M. Bulletin of the Chinese Ceramic Society, 2016, 35(1), 141 (in Chinese).
王德辉, 史才军, 吴林妹. 硅酸盐通报, 2016, 35(1), 141.
3 Shao X D, Fan W,Huang Z Y. China Civil Engineering Journal, 2021, 54(1), 1 (in Chinese).
邵旭东, 樊伟, 黄政宇. 土木工程学报, 2021, 54(1), 1.
4 Zheng W Z, Lu S S, Zhang M H. Journal of Building Structures, 2009, 30(3), 62 (in Chinese).
郑文忠, 卢姗姗, 张明辉. 建筑结构学报, 2009, 30(3), 62.
5 Peng G F, Niu X J, Cheng L. Materials Reports, 2017, 31(23), 17 (in Chinese).
朋改非, 牛旭婧, 成铠. 材料导报, 2017, 31(23), 17.
6 Kodur V R. In: Proceedings of ASCE Structures Congres. Philadelphia, 2000, pp. 1.
7 Zheng W Z, Wang R, Wang Y. Journal of Building Structures, 2014, 35(9), 107 (in Chinese).
郑文忠, 王睿, 王英. 建筑结构学报, 2014, 35(9), 107.
8 Jin L Z, Wang L, Zhang Y,et al. Journal of Huaqiao University (Natural Science), 2018, 39(3), 365 (in Chinese).
金凌志, 王龙, 张毅, 等. 华侨大学学报(自然科学版), 2018, 39(3), 365.
9 Lim W Y, Hong S G. International Journal of Concrete Structures and Materials, 2016, 10(2), 177.
10 Kamal M M, Safan M A, Etman Z A, et al. HBRC Journal, 2014, 10(1), 55.
11 Deng Z C, Chen C S, Chen X W. China Civil Engineering Journal, 2015, 48(5), 51 (in Chinese).
邓宗才, 陈春生, 陈兴伟. 土木工程学报, 2015, 48(5), 51.
12 Hou X M, Ren P F, Rong Q. Engineering Structures, 2019, 185, 122.
13 Li L. Mechanical behavior and design method for reactive powder concrete beams. Ph.D. Thesis, Harbin Institute of Technology, China, 2010 (in Chinese).
李莉. 活性粉末混凝土梁受力性能及设计方法研究. 博士学位论文, 哈尔滨工业大学, 2010.
14 Zhang P. Study on oblique section shear-bearing capacity of RPC beam based on softened truss theory. Ph.D. Thesis, Beijing Jiaotong University, China, 2011 (in Chinese).
张浦. 基于软化桁架理论的RPC梁斜截面抗剪承载能力研究. 博士学位论文, 北京交通大学, 2011.
15 State General Administration of the People's Republic of China for Quality Supervision and Inspection and Quarantine, Standardization Administration of China. Fire-resistance tests-elements of building construction, Standards Press of China, China, 2008, pp.14 (in Chinese).
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.建筑构件耐火试验方法, 中国标准出版社, 2008, pp. 14.
16 Zheng W Z, Hou X M, Yan K. High temperature performance and fire resistance design of prestressed concrete, Harbin Institute of Technology Press, China, 2013 (in Chinese).
郑文忠, 侯晓萌, 闫凯.预应力混凝土高温性能及抗火设计, 哈尔滨工业大学出版社, 2013.
17 Zheng W Z, Luo B F, Wang Y. Construction and Building Materials, 2013, 41, 844.
[1] 陈瑞明, 向阳开, 梁路, 赵毅. 冻融循环与预应力共同作用下混凝土抗压强度试验研究[J]. 材料导报, 2022, 36(Z1): 21120009-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed