Please wait a minute...
材料导报  2024, Vol. 38 Issue (13): 23020160-7    https://doi.org/10.11896/cldb.23020160
  无机非金属及其复合材料 |
金红石TiO2纳米线忆阻器的制备及阻变存储机制
余志强1,2,†,*, 徐佳敏1,†, 韩旭1, 陈诚1, 曲信儒1, 唐锦1, 孙子君1, 徐智谋2
1 广西科技大学电子工程学院,广西 柳州 545006
2 华中科技大学光学与电子信息学院,武汉光电国家研究中心,武汉 430074
Preparation and Resistive Switching Mechanism of Rutile TiO2 Nanowire Memristor
YU Zhiqiang1,2,†,*, XU Jiamin1,†, HAN Xu1, CHEN Cheng1, QU Xinru1, TANG Jin1, SUN Zijun1, XU Zhimou2
1 Faculty of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China
2 Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
下载:  全 文 ( PDF ) ( 5096KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用简单高效的一步水热法工艺制备了具有一维有序结构的金红石TiO2纳米线阵列,设计了Au/TiO2/FTO器件结构的金红石TiO2纳米线忆阻器,系统研究了器件的阻变存储特性和存储机制,构建了器件基于氧空位迁移的非线性阻变存储机制模型。结果表明,Au/TiO2/FTO结构金红石TiO2纳米线忆阻器具有非易失性的双极性阻变存储特性,器件的阻变开关比可以稳定地保持在102以上。此外,器件在低阻态时满足线性的欧姆导电特性,在高阻态时服从陷阱控制的空间电荷限制电流传导机制,而器件的阻变存储行为则遵循基于氧空位迁移的非线性离子迁移阻变存储机制,研究结果表明金红石TiO2纳米线忆阻器在下一代非易失性存储器方面具有重要的应用潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余志强
徐佳敏
韩旭
陈诚
曲信儒
唐锦
孙子君
徐智谋
关键词:  TiO2纳米线  忆阻器  非易失性  氧空位    
Abstract: In this work, the one-dimensional ordered rutile TiO2 nanowire arrays were fabricated by a facile hydrothermal process. The rutile TiO2 nanowire memory device with the Au/TiO2/FTO structure has been prepared. The resistive switching mechanism of the Au/TiO2/FTO device has been studied systematically and the nonlinear resistive switching model modified by oxygen vacancies has been developed. The Au/TiO2/FTO device indicates a nonvolatile bipolar resistive switching characteristic. A high resistance ratio in excess of two orders of magnitude was obtained in the TiO2 nanowire-based Au/TiO2/FTO device. Furthermore, the resistive switching behaviors of the TiO2 nanowire memory device are modulated by the trap regulated SCLC mechanism in the high resistance state and the Ohmic conduction mechanism in the low resistance state, respectively. In addition, the nonlinear ion-drift model adjusted by oxygen vacancies has been proposed, which has been suggested to be responsible for the nonvolatile resistive switching behavior of the Au/TiO2/FTO device. This work demonstrates that the Au/TiO2/FTO device may be a potential candidate for future nonvolatile memory applications.
Key words:  TiO2 nanowire    memristor    nonvolatile    oxygen vacancies
出版日期:  2024-07-10      发布日期:  2024-08-01
ZTFLH:  TQ125  
基金资助: 国家自然科学基金(61805053);广西科技厅科研项目(AD19110038);广西科技大学博士基金项目(19Z07);广西研究生教育创新计划项目(YCSW2021135)
通讯作者:  *余志强,广西科技大学电子工程学院副教授、硕士研究生导师。2007年湖北民族大学电子工程系电子信息科学与技术专业本科毕业,2010年贵州大学理学院微电子学与固体电子学专业硕士毕业后到湖北民族大学工作,2018年到广西科技大学工作至今,2017年华中科技大学微电子学与固体电子学专业博士毕业。目前主要从事先进存储器、柔性电子器件、神经形态器件及类脑芯片技术等方面的研究工作。发表论文40余篇,包括Materials and Design、Journal of Alloys and Compounds、Applied Surface Science、Chinese Physics B、Sensors、《物理学报》《无机材料学报》《发光学报》等。zhiqiangyu@gxust.edu.cn   
作者简介:  共同第一作者。徐佳敏,2020年6月于常州工学院获得工学学士学位。现为广西科技大学自动化学院硕士研究生,在余志强老师的指导下进行研究。目前主要研究领域为信息存储材料与器件。
引用本文:    
余志强, 徐佳敏, 韩旭, 陈诚, 曲信儒, 唐锦, 孙子君, 徐智谋. 金红石TiO2纳米线忆阻器的制备及阻变存储机制[J]. 材料导报, 2024, 38(13): 23020160-7.
YU Zhiqiang, XU Jiamin, HAN Xu, CHEN Cheng, QU Xinru, TANG Jin, SUN Zijun, XU Zhimou. Preparation and Resistive Switching Mechanism of Rutile TiO2 Nanowire Memristor. Materials Reports, 2024, 38(13): 23020160-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23020160  或          http://www.mater-rep.com/CN/Y2024/V38/I13/23020160
1 Chua L O. IEEE Transactions on Circuit Theory, 1971, 18, 507.
2 Strukov D B, Snider G S, Stewart D R, et al. Nature, 2008, 453, 80.
3 Yang J J, Pickett M D, Li X, et al. Nature Nanotechnology, 2008, 3(7), 429.
4 Kim S, Lee J, Ling L, et al. Advanced Materials, 2022, 34(6), 2106913.
5 Chen J, Wu Y L, Zhu K L, et al. Electrochimica Acta, 2019, 316, 133.
6 Xiao M, Musselman K P, Duley W W, et al. ACS Applied Materials & Interfaces, 2017, 9, 4808.
7 Long S B, Liu Q, Lyu H B, et al. Scientia Sinica Physica, Mechanica & Astronomica, 2016, 46(10), 107311(in Chinese).
龙世兵, 刘琦, 吕杭炳, 等. 中国科学: 物理学力学天文学, 2016, 46(10), 107311.
8 Hoskins B D, Adam G C, Strelcov E, et al. Nature Communications, 2017, 8, 1972.
9 Yu Z Q, Liu M L, Lang J X, et al. Acta Physica Sinica, 2018, 67(15), 157302 (in Chinese).
余志强, 刘敏丽, 郎建勋, 等. 物理学报, 2018, 67(15), 157302.
10 Ebenhoch C, Kalb J L, Lim J, et al. ACS Applied Materials & Interfaces, 2020, 12, 23363.
11 Persson K M, Ram M S, Kilpi O P, et al. Advanced Electronic Materials, 2020, 6(6), 2000154.
12 Mahmoud N A, Maximilian S, Brian C O, et al. Nano Letters, 2021, 21(6), 2666.
13 Gianluca M, Michael L, Zheng M, et al. Nature Communications, 2018, 9, 5151.
14 Hsu C C, Wang S Y, Lin Y S, et al. Journal of Alloys and Compounds, 2019, 779, 609.
15 You B K, Park W I, Kim J M, et al. ACS Nano, 2014, 9, 9492.
16 Huang C H, Chang W C, Huang J S, et al. Nanoscale, 2017, 9, 6920.
17 Sun Y M, Song C, Yin J, et al. Applied Physics Letters, 2019, 114, 193502.
18 Younis A, Chu D W, Li S A. Applied Physics Letters, 2013, 103, 253504.
19 Zhang P, Gao C X, Lv F Z, et al. Applied Physics Letters, 2014, 105, 152904.
20 Liu Q, Guan W H, Long S B, et al. Applied Physics Letters, 2008, 92, 012117.
21 Lee J H, Schell W, Zhu X J, et al. ACS Applied Materials & Interfaces, 2019, 11, 11579.
22 Kelly C O, Fairfield J A, Boland J J. ACS Nano, 2014, 8(11), 11724.
23 Lin L, Liu L, Musselman K, et al. Advanced Functional Materials, 2016, 26, 5979.
24 Xiao M, Musselman K P, Duley W W, et al. Nano-Micro Letters, 2017, 9(2), 15.
25 Yu Z Q, Qu X P, Yang W P, et al. Journal of Alloys and Compounds, 2016, 688, 37.
26 Liu B, Aydil E S. Journal of the American Chemical Society, 2009, 131, 3985.
27 Su C, Liu L, Zhang M, et al. CrystEngComm, 2012, 14, 3989.
28 Ge J, Chaker M. ACS Applied Materials & Interfaces, 2017, 9, 16327.
29 Alagoz H S, Chow K H, Jung J. Applied Physics Letters, 2019, 114, 163502.
30 Zhang F, Gan X Y, Li X M, et al. Electrochemical and Solid-State Letters, 2011, 14 (10), H422.
31 Sun B, Li Q L, Zhao W X, et al. Journal of Nanoparticle Research, 2014, 16, 2389.
32 Yu Y T, Wang C Q, Jiang C, et al. Journal of Alloys and Compounds, 2021, 868, 159194.
33 Chu D W, Younis A, Li S A. Journal of Physics D: Applied Physics, 2012, 45, 355306.
34 Wang H J, Zhu Y Y, Fu D J. Journal of Alloys and Compounds, 2017, 695, 2669.
35 Berdan R, Prodromakis T, Salaoru I, et al. Applied Physics Letters, 2012, 101, 243502.
36 Tang Z S, Fang L, Xu N, et al. Journal of Applied Physics, 2015, 118, 185309.
37 Yu Y M, Yang F, Mao S S, et al. Chemical Physics Letters, 2018, 706, 477.
38 Bogle K A, Bachhav M N, Deo M S, et al. Applied Physics Letters, 2009, 95, 203502.
39 Park J, Biju K P, Jung S, et al. IEEE Electron Device Letters, 2011, 32(4), 476.
40 Zou L L, Hu W, Xie W, et al. Journal of Alloys and Compounds, 2017, 693, 1180.
41 Fu L P, Song X Q, Gao X P, et al. Chinese Physics B, 2021, 30(1), 016103.
[1] 刘菁, 张建, 赵波. 光电忆阻器用于突触仿生领域的研究进展[J]. 材料导报, 2024, 38(4): 22060027-10.
[2] 马江微, 翟海潮, 张紫薇, 胡季帆. MOFs衍生的Sn掺杂In2O3材料的制备及氯气气敏性能[J]. 材料导报, 2023, 37(16): 23040030-6.
[3] 史燃, 张翔宇, 南波航, 徐桂英. Cu2Se热电忆阻器模拟计算与性能表征[J]. 材料导报, 2023, 37(13): 22010058-7.
[4] 明帅强, 王浙加, 吴鹿杰, 冯嘉恒, 高雅增, 卢维尔, 夏洋. 原子层沉积法制备SnO2薄膜及其对钙钛矿电池性能的影响[J]. 材料导报, 2022, 36(7): 20110236-6.
[5] 曹青, 熊礼苗, 李鹏程. 二维忆阻材料及其阻变机理研究进展[J]. 材料导报, 2022, 36(21): 21040128-12.
[6] 唐明响, 陈良, 祁核, 孙胜东, 刘辉, 陈骏. 缺陷偶极子调控铅基钙钛矿压电陶瓷性能的研究进展[J]. 材料导报, 2022, 36(2): 20090329-6.
[7] 陈晓平, 楼玉民, 赵宁宁, 黄一君, 胡海龙, 岳建岭. 基于异质结构忆阻器的研究进展[J]. 材料导报, 2022, 36(10): 20070058-10.
[8] 李龙泰, 张春杰, 罗学彬, 杨彬, 郭利民. 用于CO2催化加氢In2O3基催化剂的研究进展[J]. 材料导报, 2021, 35(21): 21071-21078.
[9] 杨露, 郭敏, 宋志成, 刘大伟, 倪玉凤. 基于高长径比TiO2纳米线的染料敏化太阳能电池光阳极的制备[J]. 材料导报, 2020, 34(Z1): 7-12.
[10] 陆骐峰,孙富钦,王子豪,张珽. 柔性人工突触:面向智能人机交互界面和高效率神经网络计算的基础器件[J]. 材料导报, 2020, 34(1): 1022-1049.
[11] 卢颖,陈威林,高双,李润伟. 柔性阻变存储材料与器件研究进展[J]. 材料导报, 2020, 34(1): 1146-1154.
[12] 黄俊, 李荣兴, 谢刚, 田林, 杨妮, 俞小花, 李威. 金红石型TiO2(110)表面吸附TiCl4的微观机理[J]. 材料导报, 2018, 32(20): 3524-3530.
[13] 张冠群,许州,刘建雄,杨艳蓉,刘成,程琪,于晓华. 二次水热法制备鸟巢状TiO2/Co3O4纳米结构及其锂电性能*[J]. 材料导报编辑部, 2017, 31(22): 5-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed