Preparation and Resistive Switching Mechanism of Rutile TiO2 Nanowire Memristor
YU Zhiqiang1,2,†,*, XU Jiamin1,†, HAN Xu1, CHEN Cheng1, QU Xinru1, TANG Jin1, SUN Zijun1, XU Zhimou2
1 Faculty of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China 2 Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract: In this work, the one-dimensional ordered rutile TiO2 nanowire arrays were fabricated by a facile hydrothermal process. The rutile TiO2 nanowire memory device with the Au/TiO2/FTO structure has been prepared. The resistive switching mechanism of the Au/TiO2/FTO device has been studied systematically and the nonlinear resistive switching model modified by oxygen vacancies has been developed. The Au/TiO2/FTO device indicates a nonvolatile bipolar resistive switching characteristic. A high resistance ratio in excess of two orders of magnitude was obtained in the TiO2 nanowire-based Au/TiO2/FTO device. Furthermore, the resistive switching behaviors of the TiO2 nanowire memory device are modulated by the trap regulated SCLC mechanism in the high resistance state and the Ohmic conduction mechanism in the low resistance state, respectively. In addition, the nonlinear ion-drift model adjusted by oxygen vacancies has been proposed, which has been suggested to be responsible for the nonvolatile resistive switching behavior of the Au/TiO2/FTO device. This work demonstrates that the Au/TiO2/FTO device may be a potential candidate for future nonvolatile memory applications.
通讯作者: *余志强,广西科技大学电子工程学院副教授、硕士研究生导师。2007年湖北民族大学电子工程系电子信息科学与技术专业本科毕业,2010年贵州大学理学院微电子学与固体电子学专业硕士毕业后到湖北民族大学工作,2018年到广西科技大学工作至今,2017年华中科技大学微电子学与固体电子学专业博士毕业。目前主要从事先进存储器、柔性电子器件、神经形态器件及类脑芯片技术等方面的研究工作。发表论文40余篇,包括Materials and Design、Journal of Alloys and Compounds、Applied Surface Science、Chinese Physics B、Sensors、《物理学报》《无机材料学报》《发光学报》等。zhiqiangyu@gxust.edu.cn
1 Chua L O. IEEE Transactions on Circuit Theory, 1971, 18, 507. 2 Strukov D B, Snider G S, Stewart D R, et al. Nature, 2008, 453, 80. 3 Yang J J, Pickett M D, Li X, et al. Nature Nanotechnology, 2008, 3(7), 429. 4 Kim S, Lee J, Ling L, et al. Advanced Materials, 2022, 34(6), 2106913. 5 Chen J, Wu Y L, Zhu K L, et al. Electrochimica Acta, 2019, 316, 133. 6 Xiao M, Musselman K P, Duley W W, et al. ACS Applied Materials & Interfaces, 2017, 9, 4808. 7 Long S B, Liu Q, Lyu H B, et al. Scientia Sinica Physica, Mechanica & Astronomica, 2016, 46(10), 107311(in Chinese). 龙世兵, 刘琦, 吕杭炳, 等. 中国科学: 物理学力学天文学, 2016, 46(10), 107311. 8 Hoskins B D, Adam G C, Strelcov E, et al. Nature Communications, 2017, 8, 1972. 9 Yu Z Q, Liu M L, Lang J X, et al. Acta Physica Sinica, 2018, 67(15), 157302 (in Chinese). 余志强, 刘敏丽, 郎建勋, 等. 物理学报, 2018, 67(15), 157302. 10 Ebenhoch C, Kalb J L, Lim J, et al. ACS Applied Materials & Interfaces, 2020, 12, 23363. 11 Persson K M, Ram M S, Kilpi O P, et al. Advanced Electronic Materials, 2020, 6(6), 2000154. 12 Mahmoud N A, Maximilian S, Brian C O, et al. Nano Letters, 2021, 21(6), 2666. 13 Gianluca M, Michael L, Zheng M, et al. Nature Communications, 2018, 9, 5151. 14 Hsu C C, Wang S Y, Lin Y S, et al. Journal of Alloys and Compounds, 2019, 779, 609. 15 You B K, Park W I, Kim J M, et al. ACS Nano, 2014, 9, 9492. 16 Huang C H, Chang W C, Huang J S, et al. Nanoscale, 2017, 9, 6920. 17 Sun Y M, Song C, Yin J, et al. Applied Physics Letters, 2019, 114, 193502. 18 Younis A, Chu D W, Li S A. Applied Physics Letters, 2013, 103, 253504. 19 Zhang P, Gao C X, Lv F Z, et al. Applied Physics Letters, 2014, 105, 152904. 20 Liu Q, Guan W H, Long S B, et al. Applied Physics Letters, 2008, 92, 012117. 21 Lee J H, Schell W, Zhu X J, et al. ACS Applied Materials & Interfaces, 2019, 11, 11579. 22 Kelly C O, Fairfield J A, Boland J J. ACS Nano, 2014, 8(11), 11724. 23 Lin L, Liu L, Musselman K, et al. Advanced Functional Materials, 2016, 26, 5979. 24 Xiao M, Musselman K P, Duley W W, et al. Nano-Micro Letters, 2017, 9(2), 15. 25 Yu Z Q, Qu X P, Yang W P, et al. Journal of Alloys and Compounds, 2016, 688, 37. 26 Liu B, Aydil E S. Journal of the American Chemical Society, 2009, 131, 3985. 27 Su C, Liu L, Zhang M, et al. CrystEngComm, 2012, 14, 3989. 28 Ge J, Chaker M. ACS Applied Materials & Interfaces, 2017, 9, 16327. 29 Alagoz H S, Chow K H, Jung J. Applied Physics Letters, 2019, 114, 163502. 30 Zhang F, Gan X Y, Li X M, et al. Electrochemical and Solid-State Letters, 2011, 14 (10), H422. 31 Sun B, Li Q L, Zhao W X, et al. Journal of Nanoparticle Research, 2014, 16, 2389. 32 Yu Y T, Wang C Q, Jiang C, et al. Journal of Alloys and Compounds, 2021, 868, 159194. 33 Chu D W, Younis A, Li S A. Journal of Physics D: Applied Physics, 2012, 45, 355306. 34 Wang H J, Zhu Y Y, Fu D J. Journal of Alloys and Compounds, 2017, 695, 2669. 35 Berdan R, Prodromakis T, Salaoru I, et al. Applied Physics Letters, 2012, 101, 243502. 36 Tang Z S, Fang L, Xu N, et al. Journal of Applied Physics, 2015, 118, 185309. 37 Yu Y M, Yang F, Mao S S, et al. Chemical Physics Letters, 2018, 706, 477. 38 Bogle K A, Bachhav M N, Deo M S, et al. Applied Physics Letters, 2009, 95, 203502. 39 Park J, Biju K P, Jung S, et al. IEEE Electron Device Letters, 2011, 32(4), 476. 40 Zou L L, Hu W, Xie W, et al. Journal of Alloys and Compounds, 2017, 693, 1180. 41 Fu L P, Song X Q, Gao X P, et al. Chinese Physics B, 2021, 30(1), 016103.