Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (4): 65-69    https://doi.org/10.11896/j.issn.1005-023X.2017.04.015
  材料研究 |
退火对PPR管材专用料结晶行为及抗低温性能的影响*
王潇梦1,2, 尹晓刚1,2, 蒋团辉2, 刘卫1, 龚维1,2
(1 贵州师范大学材料与建筑工程学院, 贵阳 550025;
2 国家复合改性聚合物材料工程技术研究中心, 贵阳 550014)
Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
WANG Xiaomeng1,2, YIN Xiaogang1,2, JIANG Tuanhui2, LIU Wei1, GONG Wei1,2
1 College of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025;
2 National Engineering Research Center for Compounding and Modification of Polymeric Materials, Guiyang 550014
下载:  全 文 ( PDF ) ( 1859KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过对无规共聚聚丙烯(PPR)管材专用料进行退火处理,采用SEM、DSC、XRD、POM 等表征技术,分析了退火对PPR力学性能及结晶行为的影响规律。结果表明,在常温及低温(0~23 ℃)条件下,与未退火的PPR比较,退火工艺为120 ℃退火6 h的材料冲击韧性最理想,其综合力学性能最好。在23 ℃时的冲击强度为51.61 kJ/m2,是未退火样品的1.9倍。0 ℃时的冲击强度也高达33.86 kJ/m2,是未退火样品的2.9倍。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王潇梦
尹晓刚
蒋团辉
刘卫
龚维
关键词:  无规共聚聚丙烯  退火  抗低温性能  结晶行为    
Abstract: The effect of annealing on mechanical properties and crystallization behaviors of polypropylene random copolymer (PPR) dedicated pipe materials were analyzed by SEM, differential scanning calorimetry (DSC), XRD and polarized optical microscopy (POM). The results showed that when compared with unannealed sample, PPR annealed at 120 ℃ for 6 h indicated desired impact toughness and the relative better comprehensive mechanical properties under room temperature and low temperature (0-23 ℃). The impact strength at 23 ℃ was 51.61 kJ/m2 which was 1.9 times than that of unannealed sample. And the impact strength at 0 ℃ was also up to 33.86 kJ/m2 which was 2.9 times than that of unannealed PPR.
Key words:  polypropylene random copolymer    annealing    low-temperature toughness    crystallization behavior
出版日期:  2017-02-25      发布日期:  2018-05-02
ZTFLH:  TQ325.1+4  
基金资助: *国家自然科学基金(21264004);贵州省“百”层次人才项目(黔科合人才[2016]5673号);贵州省功能高分子材料科技创新人才团队建设项目(黔科合人才团队[2014]4006号);贵州省优秀青年科技人才项目(黔科合人字(2015)29号);贵州省科技特派员项目(黔科合农科特派[2015]4003-5号)
通讯作者:  龚维:通讯作者,男,1974年生,博士,教授,研究方向为高分子材料结构与性能 E-mail:gw20030501@163.com   
作者简介:  王潇梦:女,1989年生,硕士,研究方向为高分子材料结构与性能 E-mail:wxm890206@163.com
引用本文:    
王潇梦, 尹晓刚, 蒋团辉, 刘卫, 龚维. 退火对PPR管材专用料结晶行为及抗低温性能的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 65-69.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.04.015  或          https://www.mater-rep.com/CN/Y2017/V31/I4/65
1 Tang W H, Tang J, Yuan H L, et al. Crystallization behavior and mechanical properties of polypropylene random copolymer/poly(ethy-lene-octene) blends[J]. J Appl Polym Sci,2011,122(1):461.
2 Leng J H, Lui H, He B B, et al. Combined effect of modified zeolite 13X and β-nucleating agent on improving β-crystal content and toughening polypropylene random copolymer[J]. Chin J Polym Sci,2013,31(11):1563.
3 Chen J W, Dai J, Yang J H, et al. Annealing-induced crystalline structure and mechanical property changes of polypropylene random copolymer[J]. J Mater Res,2013,28(22):3100.
4 Wu H Y, Li X X, Wang Y H, et al. Fracture behaviors of isotactic polypropylene/poly(ethylene oxide) blends: Effect of annealing[J]. Mater Sci Eng A,2011,528(27):8013.
5 Bai H W, Luo F, Zhou T N, et al. New insight on the annealing induced microstructural changes and their roles in the toughening of β-form polypropylene[J]. Polymer,2011,52(10):2351.
6 Liu B B, Shangguan Y G, Zheng Q. Toughening of ethylene-propy-lene random copolymer/clay nanocomposites: Comparison of diffe-rent compatibilizers[J]. Chin J Polym Sci,2012,30(6):853.
7 Li J X, Cheung W L, Jia D M. A study on the heat of fusion of β-polypropylene[J]. Polymer,1999,40(5):1219.
8 Turner Jones A, Aizlewood Jean M, Beckett D R. Crystalline forms of isotactic polypropylene[J]. Macromolecular Chem Phys,1964,75(1):134.
9 Xu W B, Ge M L, He P S. Non-isothermal crystallization kinetics of polypropylene/montmorillonite nanocomposite[J]. Acta Polym Sin,2001(5):584(in Chinese).
徐卫兵,戈明亮,何平笙.聚丙烯/蒙脱土纳米复合材料非等温结晶动力学的研究[J]. 高分子学报,2001(5):584.
10 Bai H W, Wang Y, Zhang Z J, et al. Influence of annealing on microstructure and mechanical properties of isotactic polypropylene with β-phase nucleating agent[J]. Macromolecules,2009,42(17):6647.
11 Cao J, Lv Q F. Effect of annealing on the crystallization properties of β-PPR and high MFR β-PPR[J]. Polym Mater Sci Eng,2012,28(6):32 (in Chinese).
曹静,吕秋丰.热处理对 β-PPR和高熔体流动速率 β-PPR结晶性能的影响[J]. 高分子材料科学与工程,2012,28(6):32.
12 Wu T, Xiang M, Cao Y, et al. Influence of annealing on stress-strain behaviors and performances of β nucleated polypropylene stretched membranes[J]. J Polym Res,2014,21(11):598.
13 Offord G T, Armstrong S R, Freeman B D, et al. Porosity enhancement in β nucleated isotactic polypropylene stretched films by thermal annealing[J]. Polymer,2013,54(10):2577.
[1] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[2] 吴长军, 朱付成, 王权, 彭浩平, 刘亚, 苏旭平. 600~1 000 ℃退火处理对FCC型CoxFeMnNi3-x合金组织演变及耐蚀性的影响[J]. 材料导报, 2024, 38(18): 23080153-7.
[3] 马云路, 杨劼人, 刘泽栋, 陈瑞润. TiAl金属间化合物定向技术研究进展[J]. 材料导报, 2024, 38(15): 23100177-12.
[4] 贾建, 罗俊鹏, 张浩鹏, 闫婷, 侯琼, 张义文. W元素在新型镍基粉末高温合金中的强化作用[J]. 材料导报, 2024, 38(15): 23110103-6.
[5] 何承绪, 高洁, 毛航银, 马光, 陈新, 祝志祥, 张一航, 胡卓超. 退火温度对耐热型取向硅钢组织与磁性能的影响[J]. 材料导报, 2023, 37(8): 21090231-5.
[6] 杜金亮, 杨丽娜, 冯运莉, 李杰, 刘国龙, 吝冉. 温轧40CrMo中厚钢板在退火过程中铁素体与碳化物的协同演变规律[J]. 材料导报, 2023, 37(8): 21070164-3.
[7] 徐艳茹, 汪燕青, 陈焕明, 马骏, 侯毅. 高温快速退火制备AgNPs/SiO2中保温时间对粒径和形貌的影响[J]. 材料导报, 2023, 37(7): 21060278-5.
[8] 张冠星, 董宏伟, 钟素娟, 薛行雁, 刘晓芳, 常云峰. BAg30CuZnSn退火过程中组织性能演变[J]. 材料导报, 2023, 37(6): 21070103-4.
[9] 罗翔, 米振莉, 吴彦欣, 杨永刚, 江海涛, 胡宽辉. 退火温度对LH800空冷强化钢组织与力学性能的影响[J]. 材料导报, 2023, 37(3): 21080047-6.
[10] 余海燕, 许方贤, 张帅, 袁宁一, 丁建宁. 一种低温退火处理提高锡基钙钛矿太阳能电池效率的方法[J]. 材料导报, 2023, 37(23): 23020020-5.
[11] 朱高凡, 杨新异, 曹海波, 黄群英. 球磨时间和退火温度对氧化物弥散强化合金粉末结构的影响[J]. 材料导报, 2023, 37(17): 22030177-6.
[12] 周杰明, 黎建明, 李冬旭, 赵永田, 杨海, 魏乃光. 降低m-CVDZnS多晶残余应力的带压退火研究[J]. 材料导报, 2022, 36(8): 20110116-7.
[13] 潘琳茹, 李雪莲, 王丽, 孙禄涛, 魏彬彬, 郭春生. 覆铜热处理对Fe80Si9B11非晶铁芯软磁性能的影响:一种改善非晶铁芯温度分布的方法[J]. 材料导报, 2022, 36(3): 20090082-4.
[14] 邓丽莎, 何陈强, 杨宏, 甘勇, 陈冷. 偏析法制备高纯电子铝箔的再结晶织构演变[J]. 材料导报, 2022, 36(21): 21040243-6.
[15] 张振, 丁旭, 田晓东, 史豪杰, 罗海龙. 退火温度对5052/AZ31B爆炸复合板组织与性能的影响[J]. 材料导报, 2022, 36(15): 21040005-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed