Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (18): 64-71    https://doi.org/10.11896/j.issn.1005-023X.2017.018.014
  材料研究 |
新型Mg-8Li-5Al-5Ca合金的微观组织、力学及耐腐蚀性能*
董鹏, 陈鼎, 陈振华, 章凯
湖南大学材料科学与工程学院,长沙 410082
Microstructure, Mechanical Properties and Corrosion Resistance of a Novel Mg-8Li-5Al-5Ca Alloy
DONG Peng, CHEN Ding, CHEN Zhenhua, ZHANG Kai
College of Materials Science and Engineering, Hunan University, Changsha 410082
下载:  全 文 ( PDF ) ( 2798KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 设计了新型高钙铝比Mg-8Li-5Al-5Ca合金,通过常温拉伸、失重法、pH测定和电化学测试等方法研究了合金的常温力学性能和耐腐蚀性能。采用扫描电镜(SEM)和X射线衍射(XRD)分析了基体和腐蚀产物相结构、合金显微组织以及腐蚀形貌。研究结果表明,这种镁锂合金形成Al2Ca相包围双基体(α-Mg+β-Li)的结构,挤压后基体组织和第二相粒子均明显细化。Mg-8Li-5Al-5Ca合金的耐腐蚀性能优于一般镁锂合金,且随着挤压比的增大进一步提升。该合金的力学性能协调了镁锂合金的优良塑性和高钙铝比镁合金的高强度,拥有较高的抗拉强度(222 MPa)和延伸率(8.3%)。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董鹏
陈鼎
陈振华
章凯
关键词:  镁锂合金  热挤压  力学性能  耐蚀性  Al2Ca    
Abstract: Mg-8Li-5Al-5Ca with high ratio of calcium and aluminum was designed. Its mechanical properties at room temperature and corrosion resistance were studied by the room temperature tensile test, weight loss method, pH tests and electrochemical tests. Also, microstructure and corrosion morphology of the alloy were analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results showed that a structure of double matrix (α-Mg+β-Li) surrounded with Al2Ca phases was formed in the Mg-8Li-5Al-5Ca alloy, and both the matrix and the second phases were obviously refined after hot extrusion. The corrosion resistance was improved compared with that of the common Mg-Li alloys. Coordinating the excellent plasticity of Mg-Li alloys and high strength of the magnesium alloys with high ratio of calcium and aluminum, the Mg-8Li-5Al-5Ca alloy had high tensile strength (222 MPa) and elongation (8.3%).
Key words:  Mg-Li alloy    hot extrusion    mechanical property    corrosion resistance    Al2Ca
               出版日期:  2017-09-25      发布日期:  2018-05-08
ZTFLH:  TG146.2+2  
基金资助: 波音(中国)投资有限公司与湖南大学合作项目(# 2015-SDB-127)
通讯作者:  陈鼎:通讯作者,男,1975年生,博士,教授,博士研究生导师,研究方向为高性能镁、铝合金的制备与研发 E-mail:imr99@163.com   
作者简介:  董鹏:男,1991年生,硕士,研究方向为高性能镁锂合金的研发 E-mail:pcwl2014@hnu.edu.cn
引用本文:    
董鹏, 陈鼎, 陈振华, 章凯. 新型Mg-8Li-5Al-5Ca合金的微观组织、力学及耐腐蚀性能*[J]. 《材料导报》期刊社, 2017, 31(18): 64-71.
DONG Peng, CHEN Ding, CHEN Zhenhua, ZHANG Kai. Microstructure, Mechanical Properties and Corrosion Resistance of a Novel Mg-8Li-5Al-5Ca Alloy. Materials Reports, 2017, 31(18): 64-71.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.018.014  或          http://www.mater-rep.com/CN/Y2017/V31/I18/64
1 Chang T C, Wang J Y, Chu C L, et al. Mechanical properties and microstructures of various Mg-Li alloys[J]. Mater Lett, 2006,60(27):3272.
2 Froes F H, Eliezer D, Aghion E. The science, technology, and applications of magnesium[J]. J Met, 1998,50(9):30.
3 Biatobrzeski A, Saja K, Hubner K. Ultralight magnesium-lithium alloys[J]. Arch Foundry Eng, 2007,7(3):11.
4 Muga C O, Zhang Z W. Strengthening mechanisms of magnesium-lithium based alloys and composites[J]. Adv Mater Sci Eng, 2016,2016:1.
5 Jiang B, Qiu D, Zhang M X, et al. A new approach to grain refinement of an Mg-Li-Al cast alloy[J]. J Alloys Compd, 2010,492(1-2):95.
6 Wu H Y, Lin J Y, Gao Z W, et al. Effects of age heat treatment and thermomechanical processing on microstructure and mechanical behavior of LAZ1010 Mg alloy[J]. Mater Sci Eng A, 2009,523(1-2):7.
7 Saito N, Mabuchi M, Nakanishi M, et al. The aging behavior and the mechanical properties of the Mg-Li-Al-Cu alloy[J]. Scr Mater, 1997,36(5):551.
8 Zhou Y, Bian L, Chen G, et al. Influence of Ca addition on microstructural evolution and mechanical properties of near-eutectic Mg-Li alloys by copper-mold suction casting[J]. J Alloys Compd, 2016,664:85.
9 Ramesh C, Sakai T, Kamado S, et al. Semi-solid forming of Mg-Li-Al-Ca light metal alloys[J]. J Jpn Inst Light Met, 1998,48(1):13.
10Wang T, Wu R, Zhang M, et al. Effects of calcium on the microstructures and tensile properties of Mg-5Li-3Al alloys[J]. Mater Sci Eng A, 2011,528(18):5678.
11Sakamoto M, Akiyama S, Ogi K. Suppression of ignition and bur-ning of molten Mg alloys by Ca bearingstable oxide film[J]. J Mater Sci Lett, 1997,16(12):1048.
12Zeng R, Qi W, Zhang F, et al. In vitro corrosion of Mg-1.21Li-1.12Ca-1Y alloy[J]. Prog Nat Sci: Mater Int, 2014,24(5):492.
13Song G S, Staiger M, Kral M. Some new characteristics of the strengthening phase in β-phase magnesium-lithium alloys containing aluminum and beryllium[J]. Mater Sci Eng A, 2004,371(1-2):371.
14Zeng R C, Sun L, Zheng Y F, et al. Corrosion and characterisation of dual phase Mg-Li-Ca alloy in Hank’s solution: The influence of microstructural features[J]. Corros Sci, 2014,79:69.
15Yang Y, Peng X, Wen H, et al. Microstructure and mechanical behavior of Mg-10Li-3Al-2.5Sr alloy[J]. Mater Sci Eng A, 2014,611:1.
16Phasha M J, Ngoepe P E, Chauke H R, et al. Link between structural and mechanical stability of fcc- and bcc-based ordered Mg-Li alloys[J]. Intermetallics, 2010,18(11):2083.
17Zhou W R, Zheng Y F, Leeflang M A, et al. Mechanical property, biocorrosion and in vitro biocompatibility evaluations of Mg-Li-(Al)-(RE) alloys for future cardiovascular stent application[J]. Acta Biomater, 2013,9(10):8488.
18Zhang L, Deng K K, Nie K B, et al. Microstructures and mechanical properties of Mg-Al-Ca alloys affected by Ca/Al ratio[J]. Mater Sci Eng A, 2015,636:279.
19Yu W Y, Wang N, Xiao X B, et al. First-principles investigation of the binary AB2 type laves phase in Mg-Al-Ca alloy: Electronic structure and elastic properties[J]. Solid State Sci, 2009,11(8):1400.
20Aljarrah M, Medraj M, Wang X, et al. Experimental investigation of the MgAlCa system[J]. J Alloys Compd, 2007,436(1-2):131.
21Hai Binji, Guang Chunyao, Hong Binli. Microstructure, coldro-lling, heat treatment, and mechanical properties of Mg-Li alloys[J]. J Miner Metall Mater, 2008,15(4):440.
22Liu T, Wu S D, Li S X, et al. Microstructure evolution of Mg-14% Li-1% Al alloy during the process of equal channel angular pressing[J]. Mater Sci Eng A, 2007,460-461:499.
23Zhang Y, Zhang J, Wu G, et al. Microstructure and tensile properties of as-extruded Mg-Li-Zn-Gd alloys reinforced with icosahedral quasicrystal phase[J]. Mater Des, 2015,66:162.
24Zhang J, Zhang Y, Wu G, et al. Microstructure and mechanical properties of as-cast and extruded Mg-8Li-3Al-2Zn-0.5Nd alloy[J]. Mater Sci Eng A, 2015,621:198.
25Xiao D, Chen Z, Wang X, et al. Microstructure, mechanical and creep properties of high Ca/Al ratio Mg-Al-Ca alloy[J]. Mater Sci Eng A, 2016,660:166.
26Dong H, Pan F, Jiang B, et al. Evolution of microstructure and mechanical properties of a duplex Mg-Li alloy under extrusion with an increasing ratio[J]. Mater Des, 2014,57:121.
27Gao L, Zhang C, Zhang M, et al. The corrosion of a novel Mg-11Li-3Al-0.5RE alloy in alkaline NaCl solution[J]. J Alloys Compd, 2009,468(1-2):285.
28Brett C M A, Dias L, Trindade B, et al. Characterisation by EIS of ternary Mg alloys synthesised by mechanical alloying[J]. Electrochim Acta, 2006,51(8-9):1752.
29Aung N N, Zhou W. Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy[J]. Corros Sci, 2010,52(2):589.
30Song Y, Shan D, Chen R, et al. Corrosion characterization of Mg-8Li alloy in NaCl solution[J]. Corros Sci, 2009,51(5):1087.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[9] 毕凤琴, 周帮, 王勇. 合金化对不锈钢耐蚀性能影响的研究进展[J]. 材料导报, 2019, 33(7): 1206-1214.
[10] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[11] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[12] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[13] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[14] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[15] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed