Please wait a minute...
材料导报  2021, Vol. 35 Issue (8): 8146-8150    https://doi.org/10.11896/cldb.20020040
  金属与金属基复合材料 |
Ni60A/WC激光熔覆涂层表面抗蚀行为
肖奇, 孙文磊, 刘金朵, 黄海博
新疆大学机械工程学院,乌鲁木齐 830047
Surface Corrosion Behavior of Ni60A/WC Laser Cladding Coating
XIAO Qi, SUN Wenlei, LIU Jinduo, HUANG Haibo
School of Mechanical Engineering, Xinjiang University, Urumqi 830047, China
下载:  全 文 ( PDF ) ( 5066KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 牙轮钻头是钻井设备的重要部件,易受到磨损与腐蚀。为了增加牙轮钻头的工作时效,可在其表面激光熔覆强化层。本研究利用YLS-2000型激光器在牙轮钻头材料15CrNiMo钢表面分别制备了Ni60A熔覆层,以及5%、15%、25%(质量分数,下同)WC增强的Ni基涂层。采用SEM和EDS等方式分析了熔覆层的显微组织及元素分布;利用XRD分析了各Ni60A/WC涂层的物相组成,使用CHI660E型电化学工作站测试了Ni60A/WC涂层的耐腐蚀性能。研究WC含量对Ni60A/WC熔覆层的微观组织与耐腐蚀性能的影响;讨论Ni60A/WC熔覆层与基体在不同pH值腐蚀液中的腐蚀行为。结果表明:随着WC含量的增多,涂层组织出现微区定向凝固;各涂层中均出现了γ(Fe,Ni)以及M23C6、M6C等金属间化合物;相比于基体,在不同pH值腐蚀液中,Ni60A/WC涂层的自腐蚀电流密度降低了1~2个数量级,具备良好的耐腐蚀性能,但其耐腐蚀性与WC的添加量呈负相关;富H+、OH-环境促使钝化膜由低价氧化物转变为高价氧化物。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖奇
孙文磊
刘金朵
黄海博
关键词:  激光熔覆  WC  石油钻具  钝化膜  耐腐蚀性能    
Abstract: Roller bit is an important part of drilling equipment which is vulnerable to wear and corrosion. In order to extend the service life of the roller bit, the strengthen layer can be fabricated by laser cladding. In this paper, Ni60A coating and 5wt%,15wt%,25wt% WC reinforced Ni based coatings were prepared on 15CrNiMo steel by YLS-2000 laser instrument. Furthermore, the microstructure and element distribution of the coatings were analyzed by means of SEM and EDS. And the phase composition of each coating was investigated by XRD. Meanwhile, the electrochemical corrosion test was performed on a CHI660E type electrochemical workstation. The effect of WC content on the microstructure and corrosion resis-tance of Ni60A/WC cladding layer was studied, and the corrosion behavior of Ni60A/WC cladding layer and substrate in different pH corrosion solution was discussed. The results show that with the increase of WC content, micro area directional solidification appears in the coatings. In addition, the γ(Fe, Ni) and intermetallic compound of M23C6, M6C, et al are observed in Ni60A/WC layers. What's more, compared with the substrate, the corrosion current density of Ni60A/WC coating in different pH value corrosion solution is reduced by 1—2 orders of magnitude which perform good corrosion resistance, but its corrosion resistance is negatively related to the addition of WC. Besides, enrichment of H+ and OH- surroundings make the passivation film change from low valent oxide to superoxide.
Key words:  laser cladding    WC    drilling tools    passive film    corrosion resistance
               出版日期:  2021-04-25      发布日期:  2021-05-10
ZTFLH:  TN249  
  TG174.4  
基金资助: 新疆克拉玛依重大专项(2018ZD002B)
通讯作者:  sunwenxj@163.com   
作者简介:  肖奇,新疆大学2018级硕士研究生,主要从事激光熔覆再制造和表面改性方面的研究。
孙文磊,华中科技大学博士,教授,主要从事数字化设计与制造、增材再制造技术等方面的研究。
引用本文:    
肖奇, 孙文磊, 刘金朵, 黄海博. Ni60A/WC激光熔覆涂层表面抗蚀行为[J]. 材料导报, 2021, 35(8): 8146-8150.
XIAO Qi, SUN Wenlei, LIU Jinduo, HUANG Haibo. Surface Corrosion Behavior of Ni60A/WC Laser Cladding Coating. Materials Reports, 2021, 35(8): 8146-8150.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20020040  或          http://www.mater-rep.com/CN/Y2021/V35/I8/8146
1 Wang D, Wang Y M, Yang Y Q, et al. Journal of Materials Processing Technology,2019,273,116277.
2 Long Y T, Nie P L, Li Z G, et al. Transactions of Nonferrous Metals Society of China,2016,26(2),431.
3 Zhang X Y, Pfeiffer S, Rutkowski P, et al. Applied Surface Science,2020,520,146340.
4 Fan P F, Zhang G. International Journal of Refractory Metals and Hard Materials,2020,87,105133.
5 Zhou Y K, Liu X B, Kang J J, et al. Engineering Failure Analysis,2020,109,10438.
6 Zhou J L, Kong D J, Journal of Alloys and Compounds,2019,795,416.
7 Bartkowski D, Ynarczak A, Piasecki A, et al. Optics & Laser Technology,2015,68,191.
8 Liu J, Liu H, Tian X, et al. Journal of Alloys and Compounds,2020,822,153708.
9 Wang X, Zhou S F, Dai X, et al. International Journal of Refractory Metals and Hard Materials,2017,64,234.
10 Chaidemenopoulos N G, Psyllaki P P, Pavlidou E, et al. Surface and Coatings Technology,2019,357,651.
11 Liu X M. Applied Laser,2006(5),299(in Chinese).
刘喜明.应用激光,2006(5),299.
12 Zhou S F, Dai X Q, Zhen H Z, et al. Journal of Mechanical Enginee-ring,2012,48(7),113(in Chinese).
周圣丰,戴晓琴,郑海忠,等.机械工程学报,2012,48(7),113.
13 Wang Y, Li K Y, Scenini F, et al. Surface and Coatings Technology,2016,302,27.
14 Zhao M Q, Lei A L. Corrosion and protection of metal, National Defense Industry Press, China,2008(in Chinese).
赵麦群,雷阿丽.金属的腐蚀与防护,国防工业出版社,2008.
15 Seo D, Lee J B, Corrosion Science,2020,173,108789.
[1] 张彦超, 韦朋余, 朱强, 赵文涛, 李天庆, 曾庆波. 316L不锈钢表面激光熔覆Stellite6合金组织及其耐液态铅铋腐蚀性能[J]. 材料导报, 2021, 35(8): 8121-8126.
[2] 于坤, 祁文军, 李志勤. TA15表面激光熔覆镍基和钴基涂层组织和性能对比研究[J]. 材料导报, 2021, 35(6): 6135-6139.
[3] 汤琦, 颜桐桐, 孙豪, 王小蕾, 王春芙, 宗成中. 动态硫化制备多壁碳纳米管/热塑性硫化胶复合材料的相态结构及热电效应[J]. 材料导报, 2021, 35(6): 6206-6211.
[4] 翟建树, 李春燕, 田霖, 卢煜, 寇生中. Fe基非晶涂层耐腐蚀性能的影响因素及提升措施综述[J]. 材料导报, 2021, 35(3): 3129-3140.
[5] 梁广, 朱胜, 王文宇, 王晓明, 韩国峰, 任智强. 铝合金腐蚀防护技术研究现状及发展趋势[J]. 材料导报, 2020, 34(Z2): 429-436.
[6] 吴韬, 段佳伟, 陈小明, 俞立涛, 陈云祥, 石淑琴. 合金元素对激光熔覆高熵合金涂层影响的研究进展[J]. 材料导报, 2020, 34(Z1): 413-419.
[7] 蒋三生, 梁立帅, 舒凤远. 45钢表面激光熔覆Co基合金覆层工艺优化[J]. 材料导报, 2020, 34(Z1): 448-451.
[8] 梁惠东, 郑汉杰, 杨浩, 王晨, 陈俊锋, 汪炳叔. 氮添加量对块体纳米晶NdFeB永磁材料的影响[J]. 材料导报, 2020, 34(8): 8025-8030.
[9] 陈林, 刘虹财, 严磊, 郭怡, 林宏, 蔺海兰, 卞军, 赵新为. 碳纳米管功能化改性聚偏氟乙烯介电复合材料的结构及性能[J]. 材料导报, 2020, 34(4): 4126-4131.
[10] 刘浩东, 喻辉, 戴京涛, 崔爱永, 魏华凯, 赵培仲, 卢长亮. 非真空激光定向凝固参数对DZ22合金熔覆层组织的影响[J]. 材料导报, 2020, 34(20): 20091-20095.
[11] 瞿猛, 唐建国, 叶凌英, 李承波, 李建湘, 周旺, 邓运来. 过时效与添加Zr对Al-Zn-Mg合金耐腐蚀性能影响的对比[J]. 材料导报, 2020, 34(2): 2083-2087.
[12] 杨俊茹, 李淑磊, 汤美红, 李贺, 张悦刊. 石墨烯掺杂对WC(0001)-Co硬质合金晶相界面结合性能的影响[J]. 材料导报, 2020, 34(18): 18109-18113.
[13] 谭金花, 孙荣禄, 牛伟, 刘亚楠, 郝文俊. TC4合金激光熔覆材料的研究现状[J]. 材料导报, 2020, 34(15): 15132-15137.
[14] 李萌, 弓满锋, 张程煜, 莫德云, 李玫, 韩栋, 张洪军. 超细、纳米晶WC-Co硬质合金烧结技术的研究现状[J]. 材料导报, 2020, 34(15): 15138-15144.
[15] 谭金花, 孙荣禄, 牛伟, 刘亚楠, 郝文俊. 激光扫描速度对TC4合金表面激光熔覆复合涂层组织及性能的影响[J]. 材料导报, 2020, 34(12): 12094-12100.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed