Please wait a minute...
材料导报  2024, Vol. 38 Issue (17): 23030064-9    https://doi.org/10.11896/cldb.23030064
  无机非金属及其复合材料 |
粗骨料形态特征差异及其与堆积空隙率关系的研究
李长志1, 周新斌2, 魏世恭3, 马昆林1,*, 于连山4, 邹卫东4
1 中南大学土木工程学院,长沙 410075
2 湖南省芷铜高速公路建设开发有限公司,湖南 怀化 418000
3 中铁一局集团第五工程有限公司,陕西 宝鸡 721004
4 中铁二十一局集团第六工程有限公司,北京 100000
Research on the Difference of Coarse Aggregate Morphology Characteristics and Its Relationship with Stacking Voidage
LI Changzhi1, ZHOU Xinbin2, WEI Shigong3, MA Kunlin1,*, YU Lianshan4, ZOU Weidong4
1 School of Civil Engineering, Central South University, Changsha 410075, China
2 Hunan Zhitong Expressway Construction and Development Co., Ltd., Huaihua 418000, Hunan, China
3 China Railway First Group No.5 Engineering Co., Ltd., Baoji 721004, Shaanxi, China
4 China Railway 21st Bureau Group No.6 Engineering Co., Ltd., Beijing 100000, China
下载:  全 文 ( PDF ) ( 19781KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 粗骨料形态特征直接影响了其堆积状态,从而影响混凝土性能。为了更准确地描述骨料形态,量化特征差异,揭示骨料形态特征与空隙率的关系,本研究采用数字图像技术分析计算了粗骨料形态参数,结合二维与三维形态特征对粗骨料形态进行了准确的评价与分类,同时采用主成分分析(PCA)方法去除了形态特征之间的重叠性,探明了多个形态特征对空隙率的综合影响。结果表明,利用棱角度(An)、圆度(Rd)、球度(Sp)能够很好地区分粗骨料形态差异。结合扁平度(FR)与伸长率(ER)可将粗骨料进一步细分为类球状、盘状、条状、针片状四种粒形。PCA分析表明粗骨料形态特征参数与空隙率具有显著的相关性,且紧密堆积削弱了形态特征对空隙率的影响程度。Sp、An是影响空隙率的关键形态特征,粗骨料空隙率随Sp增大或An减小而减小,在粗骨料生产和选型时应重点控制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李长志
周新斌
魏世恭
马昆林
于连山
邹卫东
关键词:  粗骨料  形态特征  空隙率  t检验  主成分分析    
Abstract: The morphology of coarse aggregate directly affects its packing state, thus affecting the performance of concrete. In order to accurately describe the morphology of aggregate, quantify its characteristic difference, and reveal the relationship between aggregate morphology and voidage, digital image technology was used to analyze and calculate the coarse aggregate morphological parameters in this study. The morphology of coarse aggregate was accurately evaluated and classified by combining 2D and 3D morphological parameters. Meanwhile, the principal component analysis (PCA) was used to remove the overlap between morphological parameters, and the comprehensive influence of multiple morphological parameters on voidage was found out. The results show angularity (An), roundness (Rd) and sphericity (Sp) can well distinguish the morphology differences of coarse aggregate. Combined with flatness ratio (FR) and elongation ratio (ER), coarse aggregate can be further subdivided into four particle shapes:spherical, disc-like, strip-like and needle-like. The PCA results show that there is a significant correlation between the morphology characteristic parameters of coarse aggregate and the voidage, and the close packing weakens the influence of morphology characteristics on voidage. The Sp and An are the key morphology characteristics that affect the voidage. With the increase of Sp or the decrease of An, the voidage of coarse aggregate decrease, which should be controlled in the production and selection of coarse aggregate.
Key words:  coarse aggregate    morphology    voidage    t-test    principal component analysis
出版日期:  2024-09-10      发布日期:  2024-09-30
ZTFLH:  TU528.041  
基金资助: 湖南省自然科学基金(2022JJ30732)
通讯作者:  *马昆林,中南大学土木工程学院教授。目前主要从事海绵城市、路面结构设计及损伤理论、固废资源化利用、高性能混凝土技术及高速铁路无砟轨道方面的研究和工程应用。近年来主持和参加包括国家自然科学基金、高铁联合基金、“973”和科技部重点研发计划在内的纵横向科研项目30余项,发表学术论文100余篇,获省部级以上科研奖励10项,获专利授权10项,主编教材3部,出版专著1部,作为主要起草人编制规范4部。makunlin@csu.edu.cn   
作者简介:  李长志,2021年6月于山东科技大学获得工学学士学位,现为中南大学土木工程学院硕士研究生,在马昆林教授的指导下进行研究。目前主要研究领域为骨料形态特征分析与应用、混凝土性能优化。
引用本文:    
李长志, 周新斌, 魏世恭, 马昆林, 于连山, 邹卫东. 粗骨料形态特征差异及其与堆积空隙率关系的研究[J]. 材料导报, 2024, 38(17): 23030064-9.
LI Changzhi, ZHOU Xinbin, WEI Shigong, MA Kunlin, YU Lianshan, ZOU Weidong. Research on the Difference of Coarse Aggregate Morphology Characteristics and Its Relationship with Stacking Voidage. Materials Reports, 2024, 38(17): 23030064-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23030064  或          http://www.mater-rep.com/CN/Y2024/V38/I17/23030064
1 Wu J Q, Zhou X, Zeng X H, et al. Construction and Building Materials, 2022, 348, 128598.
2 Zhang X Q, Ma K L, Long G C, et al. Materials Reports, 2024, 38(2), 114(in Chinese).
张雪芹, 马昆林, 龙广成, 等. 材料导报, 2024, 38(2), 114.
3 Lee S J, Lee C H, Shin M, et al. Construction and Building Materials, 2019, 204, 184.
4 国家市场监督管理总局, 国家标准化管理委员会.GB/T 14685-2022, 建设用卵石、碎石, 中国标准出版社, 2022.
5 Zhan D, Li P L, Wu X, et al. Construction and Building Materials, 2020, 247, 118608.
6 Lee C H, Lee S J, Shin M, et al. Construction and Building Materials, 2020, 251, 118984.
7 Kutay M E, Ozturk H I, Abbas A R, et al. International Journal of Pavement Engineering, 2011, 12(4), 421.
8 Sun Z Y, Wang C F, Hao X L, et al. Construction and Building Materials, 2020, 263, 120156.
9 Su D, Wang X, Wang X T. Powder Technology, 2020, 364, 1009.
10 Ju H Y, Li W, Tighe S, et al. Journal of Materials in Civil Engineering, 2020, 32(6), 04020140.
11 Liu Y F, Sun W J, Nair H, et al. Construction and Building Materials, 2016, 124, 645.
12 Koohmishi M, Palassi M. Transportation Geotechnics, 2017, 12, 15.
13 Zhao L H, Zhang S H, Huang D L, et al. Construction and Building Materials, 2020, 262, 119986.
14 Pouranian M R, Shishehbor M, Haddock J E. Powder Technology, 2020, 363, 369.
15 Blott S J, Pye K. Sedimentology, 2008, 55(1), 31.
16 AASHTO M 323-17, Standard specification for superpave volumetric mix design, USA, 2021.
17 Jamkar S S, Rao C B K. Cement and Concrete Research, 2004, 34(11), 2021.
18 Ma K L, Huang X Y, Shen J T, et al. Journal of Building Engineering, 2021, 44, 103292.
19 Liu Y F, Sun W J, Nair H, et al. Construction and Building Materials, 2016, 124, 645.
[1] 吴思远, 单忠德, 陈恳, 刘丰, 刘晓军, 严春晖. 3D打印连续纤维增强树脂T型梁的弯曲性能[J]. 材料导报, 2024, 38(7): 22090150-7.
[2] 张雪芹, 马昆林, 龙广成, 曾晓辉, 唐卓, 谢友均, 刘宝举. 粗骨料形态特征表征参数及其与混凝土性能关系的研究进展[J]. 材料导报, 2024, 38(2): 22060263-12.
[3] 李克亮, 弓晋伟, 陈爱玖, 孙作正, 杜晓蒙, 李宁宁. 裹浆改性再生骨料的形态特征评价方法[J]. 材料导报, 2023, 37(21): 22100017-7.
[4] 马昆林, 刘建, 申景涛, 胡明文, 王晓杰, 龙广成, 曾晓辉. 砖混再生粗骨料及其在混凝土中的研究与应用进展[J]. 材料导报, 2023, 37(18): 22010215-12.
[5] 林一柯, 何廷树, 达永琪. 自磨改性对再生粗骨料及再生混凝土性能的影响[J]. 材料导报, 2023, 37(16): 22020144-6.
[6] 杨利香, 宋兴福, 陆美荣, 夏月辉. 基于再生粗骨料裹浆厚度的含砂透水混凝土配合比设计方法[J]. 材料导报, 2022, 36(4): 21020037-7.
[7] 王英, 杨熙, 姜继斌, 李萍, 念腾飞. 动水冲刷作用下季冻区沥青混合料水损害发展的细观过程[J]. 材料导报, 2022, 36(10): 21040158-7.
[8] 潘诗婷, 李凯, 张超慧, 史才军. 粗骨料形状对混凝土氯离子扩散性能影响的数值模拟研究[J]. 材料导报, 2022, 36(10): 21030145-9.
[9] 崔立龙, 凌天清, 曾凡贵, 梁丽娟, 李汝凯. 基于探地雷达的密级配覆水沥青层的空隙率检测[J]. 材料导报, 2021, 35(4): 4092-4098.
[10] 凌天清, 崔立龙, 张意, 田波, 李定珠. 考虑沥青层表面细观构造的探地雷达空隙率检测研究[J]. 材料导报, 2021, 35(24): 24081-24087.
[11] 谢登敏, 钱春香, 张霄. 微生物矿化沉积技术强化核壳结构再生粗骨料[J]. 材料导报, 2021, 35(1): 1030-1035.
[12] 侯德华, 张庆, 韩志宇, 张芳超. 基于主成分分析法的乳化沥青残留物综合性能评价[J]. 材料导报, 2020, 34(Z2): 278-282.
[13] 卞立波, 董申, 陶志. 碱激发矿渣/粉煤灰多孔混凝土基本性能试验研究[J]. 材料导报, 2020, 34(Z2): 299-303.
[14] 刘兆麟. 纳米蛛网纤维材料的可控构筑与应用[J]. 材料导报, 2019, 33(5): 907-916.
[15] 刘兆麟. 静电纺串珠纤维形貌结构及载药性能的研究进展*[J]. 《材料导报》期刊社, 2017, 31(3): 21-25.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed