Please wait a minute...
材料导报  2020, Vol. 34 Issue (12): 12178-12184    https://doi.org/10.11896/cldb.19050144
  高分子与聚合物基复合材料 |
温敏互穿网络水凝胶/改性膨润土复合吸水保水材料的制备及表征
王毓1,2, 赵君1, 任俊鹏1, 李本秀2,3, 周进康1, 李小平1
1 贵州师范学院化学与材料学院,贵阳 550018
2 安顺市混凝土外加剂工程技术研究中心,安顺 561100
3 贵州铁建恒发新材料科技股份有限公司,安顺 561100
Preparation and Characterization of Thermosensitive Interpenetrating Double-Network Hydrogel/Modified Bentonite Composite Water Absorbent and Retention Material
WANG Yu1,2, ZHAO Jun1, REN Junpeng1, LI Benxiu2,3, ZHOU Jinkang1, LI Xiaoping1
1 School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, China
2 Anshun Engineering Research Centre of Concrete Admixture, Anshun 561100, China
3 Guizhou Tiejianhengfa New Material Technology Co. Ltd., Anshun 561100, China
下载:  全 文 ( PDF ) ( 7797KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 以改性膨润土、2-丙烯酰胺基-2-甲基丙磺酸、丙烯酰胺和新型温敏大分子单体为主要原料,N, N′-亚甲基双丙烯酰胺为交联剂,采用水溶液互穿网络聚合技术制备了温敏互穿网络水凝胶/改性膨润土复合吸水保水材料。利用X射线衍射仪(XRD)、傅里叶变换红外光谱仪(FTIR)、热重分析仪(TG)、扫描电子显微镜(SEM)和差示扫描量热仪(DSC)对样品进行了表征分析。考察了复合吸水保水材料的溶胀性能、温度敏感性能、去溶胀性能、振荡溶胀-去溶胀性能和拉伸性能。结果表明,20 ℃时复合吸水保水材料DNB5在蒸馏水和0.9%(质量分数) NaCl溶液中的最大溶胀率分别为20.59 g/g和7.92 g/g;随着改性膨润土或第二网络结构中丙烯酰胺(AM)含量的增加,复合吸水保水材料的低临界溶解温度(LCST)、溶胀率和拉伸强度增加,表现出良好的吸水、保水和温敏性;复合吸水保水材料呈现可逆溶胀-去溶胀行为和较好的机械强度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王毓
赵君
任俊鹏
李本秀
周进康
李小平
关键词:  温敏大分子单体  改性膨润土  互穿网络  吸水保水材料    
Abstract: Thermosensitive interpenetrating double-network hydrogel/modified bentonite composite water absorbent and retention material was synthesized by modified bentonite, 2-acrylamido-2-methylpropane sulfonic acid, acrylamide, thermosensive macromonomer raw materials and N,N′-methylenebis(acrylamide) as crosslinker through aqueous solution interpenetrating double-network polymerization method. The prepared samples were characterized by X-ray diffraction(XRD), Fourier transform infrared spectrometer(FTIR), thermal gravimetry(TG), field emission scanning electron microscopy(SEM), and differential scanning calorimetric (DSC). The swelling property, temperature sensitivity, deswelling property, oscillatory swelling/deswelling property and tensile strength of the composite water absorbent and retention material were studied. The results show that the absorbancy of the composite water absorbent DNB5 and retention material to deionized water and 0.9% NaCl solution is about 20.59 g/g and 7.92 g/g respectively at 20 ℃. The LCST, equilibrium swelling ratio and tensile strength of the composite water absorbent and retention material are enhanced with the increase in dosage of modified bentonite or AM of second-network. It can find that the composite water absorbent and retention material possesses good water absorption, water retention, remarkable thermosensitivity, controllable equilibrium swelling/deswelling behavior and higher mechanical property.
Key words:  thermosensitive macromonomer    modified bentonite    interpenetrating double-network    water absorbent and retention material
               出版日期:  2020-06-25      发布日期:  2020-05-29
ZTFLH:  TQ322.4  
基金资助: 贵州省自然科学基金(J20181122;J20191252);国家自然科学基金(21464005);贵州省教育厅青年科技人才基金(KY2018263)
通讯作者:  mailwyu@163.com   
作者简介:  王毓,2011年博士毕业于中国科学院成都有机化学研究所,入选2011年中国科学院“西部之光”博士人才培养计划。目前为贵州师范学院化学与材料学院教授,主要研究领域为绿色水性高分子新材料制备工艺及产业化研究、环境功能纳米复合凝胶材料与技术和新型混凝土外加剂设计、合成及生产工艺技术等。先后主持完成国家自然科学基金和省部级科研项目5项,在国内外学术刊物发表论文40余篇,申请中国发明专利9项,获授权3项。
引用本文:    
王毓, 赵君, 任俊鹏, 李本秀, 周进康, 李小平. 温敏互穿网络水凝胶/改性膨润土复合吸水保水材料的制备及表征[J]. 材料导报, 2020, 34(12): 12178-12184.
WANG Yu, ZHAO Jun, REN Junpeng, LI Benxiu, ZHOU Jinkang, LI Xiaoping. Preparation and Characterization of Thermosensitive Interpenetrating Double-Network Hydrogel/Modified Bentonite Composite Water Absorbent and Retention Material. Materials Reports, 2020, 34(12): 12178-12184.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050144  或          http://www.mater-rep.com/CN/Y2020/V34/I12/12178
1 Kabiri K, Omidian H, Zohuriaan-Mehe M, et al. Polymer Composites,2011,32(2),277.
2 Luqman A, Majid K, Rida J, et al. Journal of Clean Production,2018,201(10),78.
3 Zhang M Y, Cheng Z Q, Zhao T Q, et al. Journal of Agriculture and Food Chemistry,2014,62(35),8867.
4 Thombare N, Mishra S, Siddiqui M, et al. Carbohydrate Polymers,2018,185(1),169.
5 Bera R, Dey A, Chalrabary D. Polymer Engineering and Science,2015,55,113.
6 Jeong B, Kim S W, Bae Y H. Advanced Drug Delivery Reviews,2002,54(1),37.
7 Zhao Z, Li Z, Xia B, et al. European Polymer Journal,2008,44,1217.
8 Hirokawa Y, Tanaka T. Journal of Chemical Physics,1984,81,6379.
9 Liu H Y, Zhu X X. Polymer,1999,40(25),6985.
10 Eyigor A, Bahadori F, Yenigun V B, et al. Carbohydrate Polymers,2018,201(1),454.
11 Ueoka H, Shimomura O, Ueda K, et al. Journal of Applied Polymer Science,2018,135,46732.
12 Xiao L, Isner A B, Hilt J Z, et al. Journal of Applied Polymer Science,2013,128,1804.
13 Wang Y, Xia H F, Chen S K, et al. Materials Review B: Research Papers,2015,29(5),64(in Chinese).
王毓,夏卉芳,陈生科,等.材料导报:研究篇,2015,29(5),64.
14 Wang Y, Feng Y J, Wang B Q, et al. Journal of Applied Polymer Science,2010,116(6),3516.
15 Yang Y, Deng J, Cheng F M, et al. Journal of Functional Materials, 2014, 45(supplementary issue II),129(in Chinese).
杨漪,邓军,程方明,等.功能材料,2014,45(增刊II),129.
16 Yang S C, Zhang Y W, H J, et al. Science and Technology In Chemical Industry,2014,22(4),21(in Chinese).
杨盛春,张译文,贺洁,等.化工科技,2014,22(4),21.
17 Jaiswal M, Lale S, Ramesh N G, el al. Reactive and Functional Polymers,2013,74,1493.
18 Liu X L, Wang Y, Lu Z Y, et al. Chinese Journal of Synthetic Chemistry,2011,19(5),610(in Chinese).
刘兴利,王毓,鲁智勇,等.合成化学,2011,19(5),610.
19 Zhang X L, Li Y H, Sun J Y, et al. Non-Metallic Mines,2012,35(6),45(in Chinese).
张秀兰,栗印环,孙俊勇,等.非金属矿,2012,35(6):45.
20 Li B, Jiang Y M, Zhu M F, et al. Synthetic Technology and Application,2008,23(3),5(in Chinese).
李彪,姜永梅,朱美芳,等.合成技术及应用,2008,23(3),5.
21 Wang K P, Lin S B, Wang N N, et al. New Chemical Materials,2012,40(5),84(in Chinese).
王克平,林松柏,王娜娜,等.化工新材料,2012,40(5),84.
22 Song H Y, He S Q, Liu W T, et al. Journal of Radiation Research and Radiation Technology,2007,25(4),261(in Chinese).
宋红盐,何素芹,刘文涛,等.辐射研究与辐射工艺学报,2007,25(4),261.
23 Huang M, Jin G J, Zhang M D. Journal of Functional Materials,2009,22(4),321(in Chinese).
黄梅,金高军,张敏东.功能高分子学报,2009,22(4),321.
[1] 魏波,周金堂,姚正军,钱逸,钱崑. 环氧树脂基体的原位增韧技术研究进展[J]. 材料导报, 2019, 33(17): 2976-2988.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[10] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed