Please wait a minute...
材料导报  2020, Vol. 34 Issue (7): 7071-7081    https://doi.org/10.11896/cldb.18110099
  无机非金属及其复合材料 |
Cu2-xS和Cu2-xSe类液态材料的可控制备与热电性能研究进展
林锦豪, 谢华清, 吴子华, 李奕怀, 王元元
上海第二工业大学环境与材料工程学院,上海 201209
Progress in Controllable Preparation and Thermoelectric Properties of Cu2-xS and Cu2-xSe Liquid-like Materials
LIN Jinhao, XIE Huaqing, WU Zihua, LI Yihuai, WANG Yuanyuan
School of Environmental and Materials Engineering, Shanghai Polytechnic University, Shanghai 201209, China
下载:  全 文 ( PDF ) ( 2849KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在高速发展的21世纪,随着化石能源的日渐枯竭,人们开始把目光投放到新能源的开发。其中,热电技术的研究和发展受到广泛关注。基于热电材料的热电发电技术能够将热能直接转换为电能,相关器件和系统具有体积小、质量轻、坚固、无传动部件、无噪声运行、安全可靠、易于控制等优点。热电优值(ZT)是评价热电性能的参数,ZT=S2σT/κ, 其中S是泽贝克系数,σ是电导率,T是绝对温度,κ是热导率。当ZT值达到1以上时,说明热电材料达到商业应用的基本要求。
   近年来,多类性能出色的热电材料被发现并得到深入研究。“声子液体-电子晶体”(PLEC)类材料概念被提出后,就凭借其超低热导率特征而受到了广泛关注。作为典型的PLEC类材料,Cu-S系材料备受关注并得到较为深入的研究,其中以Cu2S和Cu2Se为主,它们都是本征p型半导体材料,具有低的热导率。在结构上,两种半导体随着温度的升高,都会发生结构相变,其中,723 K的α-Cu2S和400 K的β-Cu2Se为立方相,具有很低的热导率。在α-Cu2S中,Cu离子在S原子组成的刚性亚点阵中具有类液体的迁移行为,成为液态亚点阵。液态亚点阵对格波声子的横向传输具有很强的扰动,减少了热传导的横模数目,导致定容比热、声子平均速率和声子平均自由程的减小,使Cu2S具有很低的热导率。
   在制备方法上,Cu2-xS和Cu2-xSe均可采用纳米材料常见的合成方法——水热法和前驱体法,这两种合成方法均具有操作简单、成本低、粒径小和可灵活调控的优点。掺杂、复合是改善Cu2-xS和Cu2-xSe性能的常见手段,通过这两种方法改善其电导率或者改变其结构能够得到更低的热导率,从而获得更好的热电性能。如通过在S位上掺杂Te形成Cu2S0.52Te0.48,此化合物为纳米级马赛克结构,在1 000 K时,其ZT值达到2.1。在Se位上掺杂S形成Cu2Se0.8S0.2,不仅能降低声子的散射速度,还能引入额外的点缺陷散射声子,进一步降低复合块体的热导率,在950 K时,ZT值达到1.65。
   本文以PLEC类材料中的Cu2S和Cu2Se热电材料为主要对象,简要介绍其结构和性能,概述其常见的制备方法和最近提出的新型合成方法,综述其性能的改善方法及最新研究进展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林锦豪
谢华清
吴子华
李奕怀
王元元
关键词:  热电材料  PLEC类材料  Cu2-xS  Cu2-xSe    
Abstract: In the 21st century of rapid development of science, with the gradual depletion of fossil energy, discovery and application of new energy resources have been attracting lots of attention. Thermoelectric technology has become a promising choice. Thermoelectric conversion techno-logy based on thermoelectric materials can convert thermal energy into electrical energy directly. The related devices and systems have the advantages of small size, light weight, strong, non-transmission components, noise-free operation, safety, reliability and easy to control. Thermoelectric dimensionless figure of merit ZT is a parameter to evaluate the thermoelectric performance. ZT=S2σT/κ, where S is the Seebeck coefficient, σ is the electrical conductivity, T is the absolute temperature, and κ is the thermal conductivity. It would have remarkable thermoelectric properties and can be considered for commercial applications if the ZT value is above 1.
In recent years, various excellent thermoelectrical materials have been developed and applied. Since the concept of “Phonon liquid electron crystals (PLEC)” was brought up, more and more studies have been devoted to this novel kind of materials due to their feature of super-low thermal conductivity. Cu-S like materials (Cu2S and Cu2Se), as typical PLEC materials which are intrinsic p type semiconductors with very low thermal conductivity, have been taken more researches. As to their structures, both of them can undergo phase transition with increasing temperature. For instance, Cu2S would change to α-Cu2S in 723 K and Cu2Se would become β-Cu2Se in 400 K, both of which are cubic phase with lo-wer thermal conductivity. Especially, in the structure of α-Cu2S, a “liquid sub-lattice” is that S atoms form a rigid sublattice where Cu ions possess liquid-like migration behavior. Liquid sub-lattice disturbs the transverse propagation of lattice phonons strongly, such behavior reduces the number of transverse modes of heat conduction, leads to the decrease of specific heat at constant volume, average phonon velocity and average free path of phonons, and causes low thermal conductivity. Normally, hydrothermal method and precursor method are used to prepare most nanoscale materials with merits of simple operation, low cost, better appearance, and flexibility. In order to gather better thermal properties, we usually apply doping and composite to improve thermal conductivity or resistance further. For example, Te-doped Cu2S forms Cu2S0.52Te0.48 that is a nanoscale mosaic structure. Its ZT achieves 2.1 in 1 000 K. Similarly, S-doped Cu2Se to prepares Cu2Se0.8S0.2, not only can reduces the scattering speed of phonons, but also introduces additional point defect scattering phonons, further reducing the thermal conductivity with the result that ZT reaches 1.65 in 950 K.
This paper mainly considers typical PLEC materials, that is, Cu2-xS and Cu2-xSe related thermoelectric materials. The structures and the cha-racteristics are briefly introduced. The progresses of the studies on the preparation methods and thermoelectric properties of these two kinds of materials are reviewed. And the development tendency is further discussed.
Key words:  thermoelectric material    PLEC material    Cu2-xS    Cu2-xSe
                    发布日期:  2020-04-10
ZTFLH:  TB34  
基金资助: 国家自然科学基金(51590902;51676117);上海第二工业大学研究生项目基金(EGD18YJ0027)
通讯作者:  hqxie@sspu.edu.cn   
作者简介:  林锦豪,2016年6月毕业于广东石油化工学院,获得环境工程学士学位。现为上海第二工业大学环境与材料工程学院硕士研究生,在谢华清教授的指导下进行研究。目前主要的研究领域为热电材料。
谢华清,现任上海第二工业大学教授。1994年本科毕业于中国科技大学工程热物理专业(五年制),2002年博士毕业于中科院上海硅酸盐所材料科学与工程专业。曾先后在美国肯塔基大学机械工程系、韩国国立首尔大学先进制造和设计研究所、日本九州大学先导物质化学研究所学习工作。目前主要研究兴趣为节能与新能源材料和微尺度传热的实验与理论研究工作。
引用本文:    
林锦豪, 谢华清, 吴子华, 李奕怀, 王元元. Cu2-xS和Cu2-xSe类液态材料的可控制备与热电性能研究进展[J]. 材料导报, 2020, 34(7): 7071-7081.
LIN Jinhao, XIE Huaqing, WU Zihua, LI Yihuai, WANG Yuanyuan. Progress in Controllable Preparation and Thermoelectric Properties of Cu2-xS and Cu2-xSe Liquid-like Materials. Materials Reports, 2020, 34(7): 7071-7081.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18110099  或          http://www.mater-rep.com/CN/Y2020/V34/I7/7071
1 Ma W G, Liu Y J, Shen Y, et al. Nano Research, 2018, 11(2), 741.
2 Zhang Q, Ai X, Wang L, et al. Advanced Functional Materials, 2015, 25(6), 966.
3 Yamashita O, Tomiyoshi S, Makita K. Journal of Applied Physics, 2003, 93(1), 368.
4 Qun J, Song J, Yang Z, et al. Nature Materials, 2019, 18, 62.
5 Chen Yi. Energy band structure and thermoelectric transport properties of tellurium and antimony based compounds. Master’s Thesis, Zhejiang University, China, 2012(in Chinese).
陈怡. 碲基和锑基化合物的能带结构和热电输运特性. 硕士学位论文,浙江大学,2012.
6 Kuei F H, Sim L, Guo F, et al. Science, 2004, 303(5659), 818.
7 Tan G, Shi F, Hao S, et al. Nature Communications, 2016, 7, 12167.
8 Jiang Hongyi, Wang Huawen, Ren Wei, et al. Material Review,2007, 21(7), 119(in Chinese).
姜洪义,王华文,任卫. 材料导报, 2007, 21(7),119.
9 Su Y H. Semiconductor Information, 1999, 36, 27.
10 Usenko A, Moskovskikh D, Korotitskiy A, et al. Scripta Materialia, 2018, 146,295.
11 Sales B C, Mandrus D, Williams R K. Science, 1996, 272(5266), 1325.
12 Shi X, Yang J, Salvador J R, et al. Journal of the American Chemical Society, 2012, 133(20), 7837.
13 Glen A S. Materials Research Society, 1997, 478, 47.
14 Liu Huili, He Ying, Shi Xun, et al. Chinese Science Bulletin, 2013, 58(25), 2603(in Chinese).
刘灰礼, 何颖, 史迅,等. 科学通报, 2013, 58(25), 2603.
15 Xu Q, Huang B, Zhao Y, et al. Applied Physics Letters, 2012, 100(6), 061906.
16 Li Z, Yang H, Ding Y, et al. Dalton Transactions, 2005, 1(1), 149.
17 Wu Z, Pan C, Yao Z, et al. Crystal Growth & Design, 2006, 6(7), 1717.
18 Li K, Wang Q, Cheng X, et al. Journal of Alloys & Compounds, 2010, 504(2), L31.
19 Song C Q, Yin H H, Li S C. Micronanoelectronic Technology, 2013, 50(12), 758.
20 Zhao B, Li S, Zhang Q, et al. Chemical Engineering Journal, 2013, 230(16), 236.
21 Zhang Qinqin, Wang Wei, Xie Shuhong, et al.Journal of Functional Materials, 2017, 48(11), 11197(in Chinese).
张沁沁, 王伟, 谢淑红,等. 功能材料, 2017, 48(11), 11197.
22 Larsen T H, Sigman M, Ghezelbash A, et al. Journal of the American Chemical Society, 2003, 125(19), 5638.
23 Sigman M B Jr, Ghezelbash A, Hanrath T, et al. Journal of the American Chemical Society, 2003, 125(51), 16050.
24 Liu Z P, Xu D, Liang J B, et al. Journal of Physical Chemistry B, 2005, 109(21), 10699.
25 Du X S, Yu Z Z, Dasari A, et al. Chemistry of Materials, 2006, 18(22), 5156.
26 Yang M, Yang X, Huai L, et al. Applied Surface Science, 2008, 255(5), 1750.
27 Zhang Xia, Zhang Pingyu. Modern Chemical Industry, 2010, 30(9), 56(in Chinese).
张霞,张平余.现代化工, 2010, 30(9), 56.
28 Mondal G, Bera P, Santra A, et al. New Journal of Chemistry, 2014, 38(10), 4774.
29 Wu S, Jiang J, Liang Y, et al. Journal of Electronic Materials, 2017, 46(4), 2432.
30 He Y, Day T, Zhang T, et al. Advanced Materials, 2014, 26(23), 3974.
31 Zheng L J, Zhang B P, Li H Z, et al. Journal of Alloys & Compounds, 2017, 722, 17.
32 Li B, Huang L, Zhao G, et al. Advanced Materials, 2016, 28(37), 8316.
33 Glazov V M, Pashinkin A S, Fedorov V A. Inorganic Materials, 2000, 36(7), 641.
34 Liu H, Shi X, Xu F, et al. Nature Materials, 2012, 11(5), 422.
35 Wang W, Yan P, Liu F, et al. Journal of Materials Chemistry, 1998, 8(11), 2321.
36 Zhang W, Zhang X, Zhang L, et al. Inorganic Chemistry, 2000, 31(29), 1838.
37 Liu Y, Zeng J, Li C, et al. Materials Research Bulletin, 2002, 37(15), 2509.
38 Liu K G, Liu H, Wang J Y, et al. Journal of Alloys & Compounds, 2009, 484(1), 674.
39 Li D, Qin X Y, Liu Y F, et al. RSC Advances, 2014, 4(17), 8638.
40 Bhaskar A, Hu C H, Chang C L, et al. Journal of the European Ceramic Society, 2016, 36(11), 2755.
41 Vittal J J, Huang W, Lu Z. New Journal of Chemistry, 2002, 26(9), 1122.
42 Hsu Y J, Hung C M, Lin Y F, et al. Chemistry of Materials, 2006, 18(14), 3323.
43 Low K, Li C, Vellaisamy A, et al. Chemical Science, 2010, 1(4), 515.
44 Tafti M Y, Ballikaya S, Khachatourian A M, et al. RSC Advances, 2016, 6(112), 111457.
45 Wu You. Preparation and thermoelectric properties of Cu2Se by the solid state reaction. Master’s Thesis, Wuhan University of Technology, China, 2013(in Chinese).
吴优. 固相反应制备Cu2Se基热电材料及其性能研究. 硕士学位论文,武汉理工大学, 2013.
46 Zhao L L, Wang X L, Wang J Y, et al. Scientific Reports, 2015, 5, 7671.
47 Zou L, Zhang B P, Ge Z H, et al. Physica Status Solidi (A), 2015, 210(12), 2550.
48 Qin P, Ge Z H, Feng J. Journal of Alloys & Compounds, 2016, 696, 782.
49 Zhang Y X, Ge Z H, Feng J. Journal of Alloys & Compounds, 2017, 727, 1076.
50 Ge Z H, Qin P, He D, et al. ACS Applied Materials & Interfaces, 2017, 9(5), 4828.
51 Ge Z H, Nolas G S. Crystal Growth & Design, 2014, 14(14), 533.
52 Liang D D, Ge Z H, Li H Z, et al. Journal of Alloys & Compounds, 2017, 708, 169.
53 Liang D D, Zhang B P, Zou L, et al. Journal of Alloys & Compounds, 2017, 731, 577.
54 He Y, Lu P, Shi X, et al. Advanced Materials, 2015, 27(24), 3639.
55 Ballikaya S, Chi H, Salvador J, et al. Journal of Materials Chemistry A, 2013, 1(40), 12478.
56 Bailey T P, Hui S, Xie H, et al. Journal of Materials Chemistry A, 2016, 4(43), 17225.
57 Peng P, Gong Z N, Liu F S, et al. Intermetallics, 2016, 75, 72.
58 Li E, Wang S, Zhu Z, et al. International Journal of Modern Physics B, 2018, 32(8), 1850087.
59 Zhao K, Qiu P, Song Q, et al. Materials Today Physics, 2017, 1, 14.
60 Zhao K, Blichfeld A B, Eikeland E, et al. Journal of Materials Chemistry A, 2017, 5(34), 18148.
[1] 申兰先, 陈家莉, 李德聪, 刘文婷, 葛文, 邓书康. Yb掺杂Ⅷ型YbxBa8-xGa16Sn30笼合物的制备及热电性能[J]. 材料导报, 2020, 34(8): 8136-8140.
[2] 金胜男, 孙婷婷, 王明辉, 江莞. 电化学沉积法制备PEDOT/PEDOT∶PSS基柔性纳米纤维膜及其热电性能[J]. 材料导报, 2020, 34(8): 8184-8187.
[3] 包鑫, 柏胜强, 吴子华, 吴汀, 顾明, 谢华清. CoSb3基方钴矿热电材料保护涂层研究进展[J]. 材料导报, 2019, 33(5): 784-790.
[4] 王杨, 张忻, 刘洪亮, 王阳仲, 张久兴. 碲化铋基热电器件的有限元模拟与设计组装[J]. 材料导报, 2019, 33(20): 3367-3371.
[5] 王译文, 王海斗, 马国政, 陈书赢, 何鹏飞, 丁述宇. Ti4O7功能陶瓷材料研究与应用现状[J]. 材料导报, 2019, 33(1): 143-151.
[6] 吴艳光,羿庄城,葛震,杜飞鹏,张云飞. 提高聚(3,4-乙撑二氧噻吩)∶聚苯乙烯磺酸电导率的最新研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 26-31.
[7] 冯波, 李光强, 张城诚, 李亚伟, 贺铸, 樊希安. 温差发电用BiCuSeO基热电材料的研究进展*[J]. 材料导报, 2017, 31(21): 24-31.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed